Development of a Fuzzy Logic Controller for Small-Scale Solar Organic Rankine Cycle Cogeneration Plants
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods and Models
2.1. The Integrated Innova Microsolar Plant
2.2. The Models of the Main Subsystems
2.3. The Fuzzy Logic Controller
2.3.1. Baseline
2.3.2. Thermal Load Following
2.3.2.1. Performance-Based Supervision
2.3.2.2. Neural Network
3. Results
3.1. The Capability of the Neural Network
3.2. The Micro-Solar CHP Plant Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Nomenclature
A | internal cross-sectional area of the tube (m2) |
Asf | area of the primary collectors (m2) |
BOP | balance of the plant |
cp | specific heat (kJ/(kg·K) ) |
CHP | combined heat and power |
CSP | concentrated solar power |
f | factor depending on the Nusselt number |
DNI | direct normal irradiation (kW/m2) |
HTF | heat transfer fluid |
IAM | incident angle modifier |
LFR | linear Fresnel reflector |
mass flow rate (kg/s) | |
mass flow rate of the cooling water (kg/s) | |
mass flow rate of the organic fluid (kg/s) | |
OM | operation mode |
ORC | organic Rankine cycle |
Pexch | exchanged power between the fluid and the environment (kW) |
Pel | electrical power output from the ORC unit (kWe) |
Pth | thermal power output from the ORC unit (kWth) |
PLFR,out | outlet thermal power from the LFR (kWth) |
PCM | phase change material |
PORC,min | minimum power threshold of the ORC unit (kWth) |
PORC,max | maximum power threshold of the ORC unit (kWth) |
SOC | state of charge |
T | temperature (°C) |
TLFR,out | outlet temperature of the diathermic oil from the LFR (°C) |
TORC,off | switch-off temperature of the ORC (°C) |
TORC,on | switch-on temperature of the ORC (°C) |
Tin | inlet temperature of the cooling water at the condenser (°C) |
Tout | outlet temperature of the cooling water at the condenser (°C) |
TTES,av | average temperature of the TES tank (°C) |
TTES,max | upper temperature threshold of the TES tank before defocus (°C) |
TES | thermal energy storage |
u | velocity (m/s) |
Δhe | actual specific enthalpy difference across the expander (kJ/(kg K) ) |
Δhp | actual specific enthalpy difference across the pump (kJ/(kg K) ) |
ΔTTES | temperature difference between the diathermic oil and the PCM |
Δtint-timestep | time interval of the internal time step (s) |
ηel | electric efficiency |
ηm | mechanical efficiency |
ηopt | optical efficiency |
ηrec | efficiency of the receiver |
θ | solar incident angle |
ρ | diathermic oil density (kg/m3) |
References
- Renewable Capacity Growth Worldwide Stalled in 2018 after Two Decades of Strong Expansion—News—IEA. Available online: https://www.iea.org/news/renewable-capacity-growth-worldwide-stalled-in-2018-after-two-decades-of-strong-expansion (accessed on 5 June 2020).
- Moradi, R.; Habib, E.; Bocci, E.; Cioccolanti, L. Component-Oriented Modeling of a Micro-Scale Organic Rankine Cycle System for Waste Heat Recovery Applications. Appl. Sci. 2021, 11, 1984. [Google Scholar] [CrossRef]
- Settino, J.; Sant, T.; Micallef, C.; Farrugia, M.; Spiteri Staines, C.; Licari, J.; Micallef, A. Overview of solar technologies for electricity, heating and cooling production. Renew. Sustain. Energy Rev. 2018, 90, 892–909. [Google Scholar] [CrossRef]
- Rosso-Cerón, A.M.; León-Cardona, D.F.; Kafarov, V. Soft computing tool for aiding the integration of hybrid sustainable renewable energy systems, case of Putumayo, Colombia. Renew. Energy 2021, 174, 616–634. [Google Scholar] [CrossRef]
- Bolognese, M.; Viesi, D.; Bartali, R.; Crema, L. Modeling study for low-carbon industrial processes integrating solar thermal technologies. A case study in the Italian Alps: The Felicetti Pasta Factory. Sol. Energy 2020, 208, 548–558. [Google Scholar] [CrossRef]
- Desideri, A.; Dickes, R.; Bonilla, J.; Valenzuela, L.; Quoilin, S.; Lemort, V. Steady-state and dynamic validation of a parabolic trough collector model using the ThermoCycle Modelica library. Sol. Energy 2018, 174, 866–877. [Google Scholar] [CrossRef]
- Manfrida, G.; Secchi, R.; Stańczyk, K. Modelling and simulation of phase change material latent heat storages applied to a solar-powered Organic Rankine Cycle. Appl. Energy 2016, 179, 378–388. [Google Scholar] [CrossRef] [Green Version]
- Cioccolanti, L.; Tascioni, R.; Arteconi, A. Mathematical modelling of operation modes and performance evaluation of an innovative small-scale concentrated solar organic Rankine cycle plant. Appl. Energy 2018, 221, 464–476. [Google Scholar] [CrossRef]
- Cioccolanti, L.; Tascioni, R.; Pirro, M.; Arteconi, A. Development of a hardware-in-the-loop simulator for small-scale concentrated solar combined heat and power system. Energy Convers. Manag. X 2020, 8, 100056. [Google Scholar]
- Zadeh, L.A. Fuzzy Sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Ciabattoni, L.; Ferracuti, F.; Grisostomi, M.; Ippoliti, G.; Longhi, S. Fuzzy logic based economical analysis of photovoltaic energy management. Neurocomputing 2015, 170, 296–305. [Google Scholar] [CrossRef]
- Cavallaro, F. Fuzzy TOPSIS approach for assessing thermal-energy storage in concentrated solar power (CSP) systems. Appl. Energy 2010, 87, 496–503. [Google Scholar] [CrossRef]
- Chua, K.H.; Lim, Y.S.; Morris, S. A novel fuzzy control algorithm for reducing the peak demands using energy storage system. Energy 2017, 122, 265–273. [Google Scholar] [CrossRef]
- Lalouni, S.; Rekioua, D.; Rekioua, T.; Matagne, E. Fuzzy logic control of stand-alone photovoltaic system with battery storage. J. Power Sour. 2009, 193, 899–907. [Google Scholar] [CrossRef]
- Chekired, F.; Mahrane, A.; Samara, Z.; Chikh, M.; Guenounou, A.; Meflah, A. Fuzzy logic energy management for a photovoltaic solar home. Energy Procedia 2017, 134, 723–730. [Google Scholar] [CrossRef]
- Tascioni, R.; Arteconi, A.; Del Zotto, L.; Cioccolanti, L. Fuzzy logic energy management strategy of a multiple latent heat thermal storage in a small-scale concentrated solar power plant. Energies 2020, 13, 2733. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Salmasi, F.R. Power management of an isolated hybrid AC/DC micro-grid with fuzzy control of battery banks. IET Renew. Power Gener. 2015, 9, 484–493. [Google Scholar] [CrossRef]
- Arcos-Aviles, D.; Pascual, J.; Marroyo, L.; Sanchis, P.; Guinjoan, F. Fuzzy logic-based energy management system design for residential grid-connected microgrids. IEEE Trans. Smart Grid 2018, 9, 530–543. [Google Scholar] [CrossRef] [Green Version]
- Innova-Microsolar. Available online: http://innova-microsolar.eu/ (accessed on 3 November 2017).
- Mahkamov, K.; Pili, P.; Manca, R.; Leroux, A.; Mintsa, A.C.; Lynn, K.; Mullen, D.; Halimic, E.; Bartolini, C.; Pirro, M.; et al. Development of a Small Solar Thermal Power Plant for Heat and Power Supply to Domestic and Small Business Buildings. In Proceedings of the ASME 2018 Power Conference Collocated with the ASME 2018 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum, Lake Buena Vista, FL, USA, 24–28 June 2018. [Google Scholar]
- Costa, S.-C.; Mahkamov, K.; Kenisarin, M.; Ismail, M.; Lynn, K.; Halimic, E.; Mullen, D. Solar Salt Latent Heat Thermal Storage for a Small Solar Organic Rankine Cycle Plant. In Proceedings of the ASME 2018 12th International Conference on Energy Sustainability Collocated with the ASME 2018 Power Conference and the ASME 2018 Nuclear Forum, Lake Buena Vista, FL, USA, 24–28 June 2018. [Google Scholar]
- Simscape—MATLAB & Simulink. Available online: https://it.mathworks.com/products/simscape.html (accessed on 24 November 2019).
- Elianto S.R.L.—Home. Available online: http://www.eliantocsp.it/index.php/en/ (accessed on 14 November 2017).
- Forristall, R. Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver; National Renewable Energy Lab.: Golden, CO, USA, 2003.
- Gantenbein, P.; Jaenig, D.; Kerskes, H.; Van Essen, M. Final Report of Subtask B “Chemical and Sorption Storage”. The Overview A Report of IEA Solar Heating and Cooling Programme—Task 32 Advanced Storage Concepts for Solar and Low Energy Buildings Report B7 of Subtask B; IEA SHC: Cedar, MI, USA, 2008. [Google Scholar]
- Tascioni, R.; Cioccolanti, L.; Del Zotto, L.; Habib, E. Numerical investigation of pipelines modeling in small-scale concentrated solar combined heat and power plants. Energies 2020, 13, 429. [Google Scholar] [CrossRef] [Green Version]
- ENOGIA|The Small Turbine ORC Company. Available online: http://enogia.com/wp/#pll_switcher (accessed on 10 June 2020).
- Blondel, Q.; Tauveron, N.; Caney, N.; Voeltzel, N. Experimental study and optimization of the Organic Rankine Cycle with pure NovecTM649 and zeotropic mixture NovecTM649/HFE7000 as working fluid. Appl. Sci. 2019, 9, 1865. [Google Scholar] [CrossRef] [Green Version]
- Zeleny, Z.; Vodicka, V.; Novotny, V.; Mascuch, J.; Vodicka, V. Gear pump pump for low power power output ORC—An efficiency analysis. Energy Procedia 2017, 129, 1002–1009. [Google Scholar] [CrossRef]
- Mamdani, E.H.; Assilian, S. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man. Mach. Stud. 1975, 7, 1–13. [Google Scholar] [CrossRef]
- Hespanha, J.P.; Liberzon, D.; Morse, A.S. Overcoming the limitations of adaptive control by means of logic-based switching. Syst. Control Lett. 2003, 49, 49–65. [Google Scholar] [CrossRef] [Green Version]
- EnergyPlus—Weather Data Sources. Available online: https://energyplus.net/weather/sources (accessed on 11 January 2019).
- Cui, W.; Wang, H. A new anomaly detection system for school electricity consumption data. Information 2017, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- TRNSYS: Transient System Simulation Tool. Available online: http://www.trnsys.com/ (accessed on 14 November 2017).
- prEN 15316-3-1. Heating Systems in Buildings—Method for Calculation of System Energy Requirements and System Efficiencies—Part 3-1 Domestic Hot Water Systems, Characterisation of Needs (Tapping Requirements); CEN: Paris, France, 2006. [Google Scholar]
- Electricity Use per Household|Electricity Consumption Efficiency|WEC. Available online: https://wec-indicators.enerdata.net/household-electricity-use.html (accessed on 11 January 2019).
OM | Subsystems | Operating Condition |
---|---|---|
−1 | LFR (defocused) + ORC | Oil flow rate = 0.22 kg/s |
0 | LFR recirculation | If PLFR,out < 15 kWth and TLFR,out < TTES,av, oil flow rate = 1 kg/s |
1 | LFR + ORC | If 15 kWth < PLFR,out < 26 kWth, 0.11 kg/s < oil flow rate < 0.22 kg/s |
2 | Plant off | If PLFR,out = 0 kWth |
3 | LFR + LHTES | If PLFR,out < 15 kWth and TLFR,out = TTES,av + 10 °C |
4 | LFR + LHTES + ORC | If PLFR,out > 26 kWth and TTES,av < 280 °C, 0.22 kg/s < oil flow rate < 3 kg/s, otherwise OM−1 |
5 | TES + ORC | If PLFR,out = 0 kWth and TTES,av > TORC,off, oil flow rate = 3 kg/s |
6 | LFR + LHTES + ORC | If PLFR,out < 15 kWth and TTES,av > TORC,off, oil flow rate = 3 kg/s |
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
---|---|---|---|---|---|---|---|---|
Toil,in = 210 °C | Temperature (°C) | 73.14 | 163.66 | 168.57 | 135.32 | 85.57 | 72.00 | 113.93 |
Pressure (bar) | 2.1 | 17 | 17 | 2.1 | 2.1 | 2.1 | 17 | |
Toil,in = 150 °C | Temperature (°C) | 72.34 | 115.85 | 120.77 | 110.63 | 80.00 | 72.00 | 97.28 |
Pressure (bar) | 2.1 | 6.5 | 6.5 | 2.1 | 2.1 | 2.1 | 6.5 |
OM | Rules |
---|---|
−1 | TTES,av ≥ TTES,max 1 |
0 | OM = 3 & TLFR ≤ TTES,av + 10 °C |
1 | PLFR,out ≥ PORC,min 2 & PLFR ≤ PORC,max 3 |
2 | PLFR,out = 0 & TTES,av ≤ Tset 4 |
3 | PLFR,out ≥ PORC,min 2 & TTES,av ≤ Tset 4 |
4 | PLFR,out ≥ PORC,max 3 |
5 | PLFR,out = 0 & TTES,av ≥ Tset 4 |
6 | PLFR,out ≥ PORC,min 2 & TTES,av ≥ Tset 4 |
Rule Number | PLFR,out | TTES,av | TLFR,out | Systeminfo | Tdiff | OM |
---|---|---|---|---|---|---|
1 | zero | high OM3 | high | ok | 3 | |
2 | low | normal | bad | 0 | ||
3 | ok | *⌐good | 1 | |||
4 | ok | *⌐high | good | 4 | ||
5 | zero | normal | *⌐high | bad | 2 | |
6 | zero | high OM3 | high | ok | 3 | |
7 | low | high OM3 | high | ok | 3 | |
8 | high | *⌐high | good | 4 | ||
9 | high | high | 1 | |||
10 | zero | ok | bad | 5 | ||
11 | zero | high | 5 | |||
12 | low | ok | 6 | |||
13 | low | high | 6 | |||
14 | zero | low | *⌐high | bad | 2 | |
15 | ok | high | good | 1 | ||
16 | high | *⌐good | 1 |
Rule Number | PLFR,out | TTES,av | TLFR,out | Systeminfo | Tdiff | Time | OM |
---|---|---|---|---|---|---|---|
3 | ok | ⌐good | ok | 1 | |||
10 | zero | ok | bad | ok | 5 | ||
11 | zero | high | ok | 5 | |||
12 | low | ok | good | ok | 6 | ||
17 | ok | *⌐good | bad | *⌐ok | 4 | ||
18 | zero | high | *⌐ok | 2 | |||
19 | zero | ok | *⌐ok | 2 | |||
20 | low | ok | *⌐ok | 3 | |||
21 | low | high | *⌐ok | 6 |
Month | Eth,LFR (kWh) | Eth,ORCin (kWh) | Eel,ORC (kWh) | Eth,ORCout (kWh) | ηel,ORC (%) | ηth,ORC (%) | Eth,TESin (kWh) | Eth,TESout (kWh) |
---|---|---|---|---|---|---|---|---|
Jan. | 3.08 × 103 | 1.54 × 103 | 1.21 × 102 | 1.11 × 103 | 7.86 | 72.23 | 6.56 × 102 | −2.37 × 100 |
Feb. | 5.49 × 103 | 3.72 × 103 | 2.93 × 102 | 2.68 × 103 | 7.88 | 72.21 | 1.18 × 103 | −4.87 × 102 |
Mar. | 9.59 × 103 | 7.26 × 103 | 5.74 × 102 | 5.24 × 103 | 7.91 | 72.18 | 3.08 × 103 | −2.30 × 103 |
Apr. | 1.08 × 104 | 8.16 × 103 | 6.46 × 102 | 5.89 × 103 | 7.92 | 72.17 | 3.53 × 103 | −2.76 × 103 |
May | 1.27 × 104 | 9.64 × 103 | 7.64 × 102 | 6.96 × 103 | 7.92 | 72.17 | 3.96 × 103 | −3.17 × 103 |
Jun. | 1.41 × 104 | 1.09 × 104 | 8.64 × 102 | 7.86 × 103 | 7.93 | 72.16 | 4.36 × 103 | −3.57 × 103 |
Jul. | 1.53 × 104 | 1.19 × 104 | 9.41 × 102 | 8.56 × 103 | 7.93 | 72.16 | 4.80 × 103 | −4.02 × 103 |
Aug. | 1.38 × 104 | 1.07 × 104 | 8.51 × 102 | 7.75 × 103 | 7.92 | 72.17 | 4.41 × 103 | −3.63 × 103 |
Sep. | 1.12 × 104 | 8.71 × 103 | 6.90 × 102 | 6.29 × 103 | 7.92 | 72.17 | 3.80 × 103 | −3.07 × 103 |
Oct. | 7.41 × 103 | 5.35 × 103 | 4.22 × 102 | 3.86 × 103 | 7.90 | 72.19 | 1.98 × 103 | −1.25 × 103 |
Nov. | 3.83 × 103 | 2.27 × 103 | 1.78 × 102 | 1.64 × 103 | 7.85 | 72.25 | 7.47 × 102 | −1.11 × 102 |
Dec. | 2.69 × 103 | 1.33 × 103 | 1.03 × 102 | 9.66 × 102 | 7.72 | 72.38 | 5.51 × 102 | −4.41 × 10−1 |
Total | 1.10 × 105 | 8.15 × 104 | 6.45 × 103 | 5.88 × 104 | 7.89 | 72.20 | 3.31 × 104 | −2.44 × 104 |
Month | OM−1 (h) | OM0 (h) | OM1 (h) | OM2 (h) | OM3 (h) | OM4 (h) | OM5 (h) | OM6 (h) |
---|---|---|---|---|---|---|---|---|
Jan. | 0.00 × 100 | 8.88 × 101 | 5.83 × 101 | 5.34 × 102 | 5.08 × 101 | 1.24 × 101 | 0.00 × 100 | 0.00 × 100 |
Feb. | 0.00 × 100 | 8.09 × 101 | 5.66 × 101 | 4.12 × 102 | 2.19 × 101 | 6.93 × 101 | 6.40 × 100 | 0.00 × 100 |
Mar. | 5.95 × 100 | 4.95 × 101 | 5.48 × 101 | 3.74 × 102 | 1.90 × 101 | 1.31 × 102 | 6.89 × 101 | 5.95 × 100 |
Apr. | 2.49 × 101 | 6.43 × 101 | 6.01 × 101 | 3.10 × 102 | 8.95 × 100 | 1.27 × 102 | 8.29 × 101 | 2.49 × 101 |
May | 4.18 × 101 | 7.16 × 101 | 6.17 × 101 | 2.60 × 102 | 1.63 × 101 | 1.46 × 102 | 9.44 × 101 | 4.18 × 101 |
Jun. | 5.30 × 101 | 5.24 × 101 | 6.40 × 101 | 2.17 × 102 | 5.28 × 100 | 1.65 × 102 | 1.02 × 102 | 5.30 × 101 |
Jul. | 6.72 × 101 | 5.47 × 101 | 6.14 × 101 | 2.00 × 102 | 5.45 × 100 | 1.75 × 102 | 1.16 × 102 | 6.72 × 101 |
Aug. | 4.08 × 101 | 5.43 × 101 | 6.94 × 101 | 2.41 × 102 | 7.20 × 100 | 1.65 × 102 | 1.14 × 102 | 4.08 × 101 |
Sep. | 1.35 × 101 | 5.60 × 101 | 5.65 × 101 | 2.97 × 102 | 8.32 × 100 | 1.50 × 102 | 9.81 × 101 | 1.35 × 101 |
Oct. | 0.00 × 100 | 7.86 × 101 | 6.73 × 101 | 4.17 × 102 | 2.28 × 101 | 9.47 × 101 | 3.79 × 101 | 0.00 × 100 |
Nov. | 0.00 × 100 | 8.63 × 101 | 6.14 × 101 | 4.94 × 102 | 3.99 × 101 | 3.08 × 101 | 1.72 × 100 | 0.00 × 100 |
Dec. | 0.00 × 100 | 1.04 × 102 | 6.05 × 101 | 5.21 × 102 | 5.62 × 101 | 1.43 × 100 | 0.00 × 100 | 0.00 × 100 |
Total | 2.47 × 102 | 8.41 × 102 | 7.32 × 102 | 4.28 × 103 | 2.62 × 102 | 1.27 × 103 | 7.23 × 102 | 2.47 × 102 |
Month | Eth,LFR (kWh) | Eth,ORCin (kWh) | Eel,ORC (kWh) | Eth,ORCout (kWh) | ηel,ORC (%) | ηth,ORC (%) | Eth,TESin (kWh) | Eth,TESout (kWh) |
---|---|---|---|---|---|---|---|---|
Jan. | 3.03 × 103 | 1.55 × 103 | 1.21 × 102 | 1.12 × 103 | 7.82 | 72.50 | 7.92 × 102 | −1.65 × 102 |
Feb. | 5.54 × 103 | 3.44 × 103 | 2.69 × 102 | 2.49 × 103 | 7.83 | 72.50 | 1.47 × 103 | −7.35 × 102 |
Mar. | 9.12 × 103 | 6.09 × 103 | 4.78 × 102 | 4.41 × 103 | 7.85 | 72.49 | 2.50 × 103 | −1.66 × 103 |
Apr. | 9.85 × 103 | 6.73 × 103 | 5.29 × 102 | 4.88 × 103 | 7.86 | 72.49 | 2.43 × 103 | −1.71 × 103 |
May | 1.09 × 104 | 7.68 × 103 | 6.07 × 102 | 5.57 × 103 | 7.90 | 72.46 | 2.28 × 103 | −1.49 × 103 |
Jun. | 1.17 × 104 | 8.21 × 103 | 6.51 × 102 | 5.95 × 103 | 7.92 | 72.44 | 2.02 × 103 | −1.18 × 103 |
Jul. | 1.25 × 104 | 8.94 × 103 | 7.08 × 102 | 6.48 × 103 | 7.91 | 72.44 | 2.02 × 103 | −1.33 × 103 |
Aug. | 1.21 × 104 | 8.33 × 103 | 6.55 × 102 | 6.04 × 103 | 7.86 | 72.49 | 2.51 × 103 | −1.62 × 103 |
Sep. | 9.83 × 103 | 6.86 × 103 | 5.39 × 102 | 4.97 × 103 | 7.86 | 72.49 | 2.16 × 103 | −1.59 × 103 |
Oct. | 7.34 × 103 | 4.90 × 103 | 3.84 × 102 | 3.55 × 103 | 7.85 | 72.49 | 1.91 × 103 | −1.22 × 103 |
Nov. | 3.83 × 103 | 2.20 × 103 | 1.73 × 102 | 1.60 × 103 | 7.84 | 72.48 | 8.78 × 102 | −2.56 × 102 |
Dec. | 2.64 × 103 | 1.33 × 103 | 1.02 × 102 | 9.70 × 102 | 7.63 | 72.68 | 7.82 × 102 | −2.76 × 102 |
Total | 9.83 × 104 | 6.63 × 104 | 5.21 × 103 | 4.80 × 104 | 7.84 | 72.49 | 2.18 × 104 | −1.32 × 104 |
Month | OM−1 (h) | OM0 (h) | OM1 (h) | OM2 (h) | OM3 (h) | OM4 (h) | OM5 (h) | OM6 (h) |
---|---|---|---|---|---|---|---|---|
Jan. | 1.17 × 10−1 | 4.22 × 101 | 6.44 × 101 | 5.34 × 102 | 8.53 × 101 | 1.86 × 101 | 1.67 × 10−1 | 0.00 × 100 |
Feb. | 4.33 × 10−1 | 4.36 × 101 | 5.81 × 101 | 4.03 × 102 | 6.72 × 101 | 7.69 × 101 | 1.55 × 101 | 7.58 × 100 |
Mar. | 2.33 × 101 | 1.10 × 101 | 6.51 × 101 | 4.07 × 102 | 6.34 × 101 | 1.13 × 102 | 3.55 × 101 | 2.50 × 101 |
Apr. | 4.64 × 101 | 1.76 × 101 | 8.07 × 101 | 3.65 × 102 | 4.97 × 101 | 9.53 × 101 | 2.76 × 101 | 3.75 × 101 |
May | 7.38 × 101 | 9.38 × 100 | 9.48 × 101 | 3.42 × 102 | 7.31 × 101 | 9.36 × 101 | 1.19 × 101 | 4.52 × 101 |
Jun. | 9.81 × 101 | 1.24 × 101 | 1.08 × 102 | 3.04 × 102 | 7.30 × 101 | 8.90 × 101 | 1.58 × 101 | 1.97 × 101 |
Jul. | 1.13 × 102 | 2.78 × 100 | 1.06 × 102 | 3.08 × 102 | 7.58 × 101 | 9.51 × 101 | 7.35 × 100 | 3.62 × 101 |
Aug. | 7.86 × 101 | 1.02 × 100 | 1.01 × 102 | 3.43 × 102 | 5.43 × 101 | 1.07 × 102 | 1.13 × 101 | 4.77 × 101 |
Sep. | 4.93 × 101 | 1.40 × 101 | 8.16 × 101 | 3.75 × 102 | 4.37 × 101 | 9.79 × 101 | 1.95 × 101 | 3.89 × 101 |
Oct. | 7.75 × 100 | 3.57 × 101 | 7.33 × 101 | 4.35 × 102 | 5.24 × 101 | 9.21 × 101 | 2.02 × 101 | 2.78 × 101 |
Nov. | 1.33 × 10−1 | 5.50 × 101 | 6.31 × 101 | 4.92 × 102 | 6.54 × 101 | 3.79 × 101 | 4.08 × 100 | 2.40 × 100 |
Dec. | 5.00 × 10−2 | 7.60 × 100 | 6.50 × 101 | 5.21 × 102 | 1.41 × 102 | 8.03 × 100 | 0.00 × 100 | 0.00 × 100 |
Total | 4.91 × 102 | 2.52 × 102 | 9.60 × 102 | 4.83 × 103 | 8.44 × 102 | 9.24 × 102 | 1.69 × 102 | 2.88 × 102 |
Month | Eth,LFR (kWh) | Eth,ORCin (kWh) | Eel,ORC (kWh) | Eth,ORCout (kWh) | ηel,ORC (%) | ηth,ORC (%) | Eth,TESin (kWh) | Eth,TESout (kWh) |
---|---|---|---|---|---|---|---|---|
Jan. | 3.02 × 103 | 1.58 × 103 | 1.24 × 102 | 1.15 × 103 | 7.82 | 72.50 | 7.84 × 102 | −1.68 × 102 |
Feb. | 5.42 × 103 | 3.84 × 103 | 3.03 × 102 | 2.78 × 103 | 7.89 | 72.45 | 1.32 × 103 | −6.61 × 102 |
Mar. | 9.62 × 103 | 7.51 × 103 | 5.95 × 102 | 5.44 × 103 | 7.92 | 72.42 | 3.32 × 103 | −2.55 × 103 |
Apr. | 1.09 × 104 | 8.56 × 103 | 6.79 × 102 | 6.20 × 103 | 7.93 | 72.42 | 3.80 × 103 | −3.08 × 103 |
May | 1.28 × 104 | 1.02 × 104 | 8.05 × 102 | 7.35 × 103 | 7.93 | 72.42 | 4.29 × 103 | −3.52 × 103 |
Jun. | 1.42 × 104 | 1.14 × 104 | 9.06 × 102 | 8.26 × 103 | 7.94 | 72.41 | 4.72 × 103 | −3.94 × 103 |
Jul. | 1.54 × 104 | 1.25 × 104 | 9.92 × 102 | 9.06 × 103 | 7.94 | 72.42 | 5.18 × 103 | −4.47 × 103 |
Aug. | 1.39 × 104 | 1.13 × 104 | 8.98 × 102 | 8.20 × 103 | 7.93 | 72.42 | 4.81 × 103 | −4.05 × 103 |
Sep. | 1.13 × 104 | 9.10 × 103 | 7.21 × 102 | 6.59 × 103 | 7.93 | 72.42 | 4.09 × 103 | −3.38 × 103 |
Oct. | 7.36 × 103 | 5.53 × 103 | 4.37 × 102 | 4.00 × 103 | 7.90 | 72.44 | 2.11 × 103 | −1.41 × 103 |
Nov. | 3.79 × 103 | 2.33 × 103 | 1.83 × 102 | 1.69 × 103 | 7.87 | 72.46 | 8.43 × 102 | −2.24 × 102 |
Dec. | 2.64 × 103 | 1.33 × 103 | 1.02 × 102 | 9.70 × 102 | 7.62 | 72.69 | 7.84 × 102 | −2.75 × 102 |
Total | 1.10 × 105 | 8.52 × 104 | 6.74 × 103 | 6.17 × 104 | 7.88 | 72.45 | 3.61 × 104 | −2.77 × 104 |
Month | OM−1 (h) | OM0 (h) | OM1 (h) | OM2 (h) | OM3 (h) | OM4 (h) | OM5 (h) | OM6 (h) |
---|---|---|---|---|---|---|---|---|
Jan. | 1.00 × 10−1 | 4.37 × 101 | 6.45 × 101 | 5.35 × 102 | 8.20 × 101 | 1.85 × 101 | 0.00 × 100 | 1.70 × 100 |
Feb. | 1.33 × 10−1 | 5.10 × 101 | 5.84 × 101 | 4.07 × 102 | 3.89 × 101 | 7.69 × 101 | 1.09 × 101 | 2.83 × 101 |
Mar. | 6.25 × 100 | 3.33 × 101 | 5.65 × 101 | 3.57 × 102 | 2.90 × 101 | 1.39 × 102 | 8.62 × 101 | 3.67 × 101 |
Apr. | 2.18 × 101 | 5.09 × 101 | 6.97 × 101 | 2.88 × 102 | 1.50 × 101 | 1.31 × 102 | 1.05 × 102 | 3.84 × 101 |
May | 3.72 × 101 | 5.82 × 101 | 7.83 × 101 | 2.36 × 102 | 1.86 × 101 | 1.47 × 102 | 1.19 × 102 | 5.01 × 101 |
Jun. | 4.78 × 101 | 4.46 × 101 | 8.36 × 101 | 1.91 × 102 | 5.47 × 100 | 1.64 × 102 | 1.29 × 102 | 5.48 × 101 |
Jul. | 5.95 × 101 | 4.80 × 101 | 8.49 × 101 | 1.68 × 102 | 5.58 × 100 | 1.70 × 102 | 1.48 × 102 | 5.96 × 101 |
Aug. | 3.60 × 101 | 4.54 × 101 | 8.22 × 101 | 2.12 × 102 | 7.67 × 100 | 1.68 × 102 | 1.43 × 102 | 4.90 × 101 |
Sep. | 1.24 × 101 | 4.40 × 101 | 5.98 × 101 | 2.74 × 102 | 1.52 × 101 | 1.57 × 102 | 1.21 × 102 | 3.66 × 101 |
Oct. | 1.93 × 100 | 6.36 × 101 | 6.98 × 101 | 4.06 × 102 | 2.75 × 101 | 1.01 × 102 | 4.89 × 101 | 2.44 × 101 |
Nov. | 1.50 × 10−1 | 5.78 × 101 | 6.31 × 101 | 4.93 × 102 | 5.67 × 101 | 3.79 × 101 | 3.08 × 100 | 8.15 × 100 |
Dec. | 5.00 × 10−2 | 6.88 × 100 | 6.50 × 101 | 5.21 × 102 | 1.42 × 102 | 8.02 × 100 | 0.00 × 100 | 0.00 × 100 |
Total | 2.23 × 102 | 5.47 × 102 | 8.36 × 102 | 4.09 × 103 | 4.43 × 102 | 1.32 × 103 | 9.14 × 102 | 3.88 × 102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cioccolanti, L.; De Grandis, S.; Tascioni, R.; Pirro, M.; Freddi, A. Development of a Fuzzy Logic Controller for Small-Scale Solar Organic Rankine Cycle Cogeneration Plants. Appl. Sci. 2021, 11, 5491. https://doi.org/10.3390/app11125491
Cioccolanti L, De Grandis S, Tascioni R, Pirro M, Freddi A. Development of a Fuzzy Logic Controller for Small-Scale Solar Organic Rankine Cycle Cogeneration Plants. Applied Sciences. 2021; 11(12):5491. https://doi.org/10.3390/app11125491
Chicago/Turabian StyleCioccolanti, Luca, Simone De Grandis, Roberto Tascioni, Matteo Pirro, and Alessandro Freddi. 2021. "Development of a Fuzzy Logic Controller for Small-Scale Solar Organic Rankine Cycle Cogeneration Plants" Applied Sciences 11, no. 12: 5491. https://doi.org/10.3390/app11125491
APA StyleCioccolanti, L., De Grandis, S., Tascioni, R., Pirro, M., & Freddi, A. (2021). Development of a Fuzzy Logic Controller for Small-Scale Solar Organic Rankine Cycle Cogeneration Plants. Applied Sciences, 11(12), 5491. https://doi.org/10.3390/app11125491