Theoretical and Experimental Insights into the Tandem Mannich—Electrophilic Amination Reaction: Synthesis of Safirinium Dyes
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Experimental
4.1. Chemistry
4.1.1. Materials and Methods
4.1.2. Synthesis of 1-(hydroxymethyl)-4,6-dimethylisoxazolo[3,4-b]pyridin-3(1H)-one (2) and 1-(hydroxymethyl)isoxazolo[3,4-b]quinolin-3(1H)-one (5)
4.1.3. Synthesis of [1,2,4]triazolo[4,3-a]quinolin-2-ium-4-carboxylates (7-9)
4.2. Theoretical Calculations
4.3. X-ray Crystallography
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today 2003, 8, 1128–1137. [Google Scholar] [CrossRef]
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. [Google Scholar] [CrossRef]
- Fedorowicz, J.; Sączewski, J.; Drażba, Z.; Wiśniewska, P.; Gdaniec, M.; Wicher, B.; Suwiński, G.; Jalińska, A. Synthesis and fluorescence of dihydro-[1,2,4]triazolo[4,3-a]pyridin-2-iumcarboxylates: An experimental and TD-DFT comparative study. Dyes Pigm. 2019, 161, 347–359. [Google Scholar] [CrossRef]
- Saczewski, J.; Hinc, K.; Obuchowski, M.; Gdaniec, M. The tandem Mannich–electrophilic amination reaction: A versatile platform for fluorescent probing and labelling. Chem. Eur. J. 2013, 19, 11531–11535. [Google Scholar] [CrossRef] [PubMed]
- Fedorowicz, J.; Cebrat, M.; Wierzbicka, M.; Wiśniewska, P.; Jalińska, A.; Dziomba, S.; Gdaniec, M.; Jaremko, M.; Jaremko, L.; Chandra, K.; et al. Synthesis and evaluation of dihydro-[1,2,4]triazolo[4,3-a]pyridin-2-ium carboxylates as fixed charge fluorescent derivatization reagents for MEKC and MS proteomic analyses. J. Mol. Str. 2020, 1217, 128426. [Google Scholar] [CrossRef]
- Kraft, O.; Kozubek, M.; Hoenke, S.; Serbian, I.; Major, D.; Csuk, R. Cytotoxic triterpenoid-safirinium conjugates target the endoplasmicreticulum. Eur. J. Med. Chem. 2019, 209, 112920. [Google Scholar] [CrossRef]
- Fedorowicz, J.; Wierzbicka, M.; Cebrat, M.; Wiśniewska, P.; Piątek, R.; Zalewska-Piątek, B.; Szewczuk, Z.; Saczewski, J. Application of Safirinium N-Hydroxysuccinimide Esters to Derivatization of Peptides for High-Resolution Mass Spectrometry, Tandem Mass Spectrometry, and Fluorescent Labeling of Bacterial Cells. Int. J. Mol. Sci. 2020, 21, 9643. [Google Scholar] [CrossRef]
- Cervantes, C.; Mora, J.R.; Marquez, E.; Torres, J.; Rincón, L.; Mendez, M.A.; Alcázar, J.J. Theoretical Calculations of the Multistep Reaction Mechanism Involved in Asparagine Pyrolysis Supported by Degree of Rate Control and Thermodynamic Control Analyses. Appl. Sci. 2019, 9, 4847. [Google Scholar] [CrossRef] [Green Version]
- Saielli, G. TD-DFT Prediction of the Intermolecular Charge-Transfer UV-Vis Spectra of Viologen Salts in Solution. Appl. Sci. 2020, 10, 8108. [Google Scholar] [CrossRef]
- Friães, S.; Lima, E.; Boto, R.E.; Ferreira, D.; Fernandes, J.R.; Ferreira, L.F.V.; Silva, A.M.; Reis, L.V. Photophysicochemical Properties and In Vitro Phototherapeutic Effects of Iodoquinoline- and Benzothiazole-Derived Unsymmetrical Squaraine Cyanine Dyes. Appl. Sci. 2019, 9, 5414. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Chai, J.-D.; Head-Gordon, M. Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 2008, 128, 084106. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef] [PubMed]
- Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016.
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 130, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gansäuer, A.; Seddiqzai, M.; Dahmen, T.; Sure, R.; Stefan Grimme, S. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines. Beilstein J. Org. Chem. 2013, 9, 1620–1629. [Google Scholar] [CrossRef] [PubMed]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. 2016, B72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Gawdzik, B.; Iwanek, W. Synthesis, structure, and stereochemistry of the bora derivativesof 1-[(2-hydroxy-1-naphthyl)methyl]proline. Tetrahedron Asymmetry 2005, 16, 2019–2023. [Google Scholar] [CrossRef]
- Fedorowicz, J.; Sączewski, J.; Konopacka, A.; Waleron, K.; Lejnowski, D.; Ciura, K.; Tomasic, T.; Skok, Z.; Savijoki, K.; Morawska, M.; et al. Synthesis and biological evaluation of hybrid quinolone-based quaternary ammonium antibacterial agents. Eur. J. Med. Chem. 2019, 179, 576–590. [Google Scholar] [CrossRef]
- Sączewski, J.; Fedorowicz, J.; Korcz, M.; Sączewski, F.; Wicher, B.; Gdaniec, M.; Konopacka, A. Experimental and theoretical studies on the tautomerism and reactivity of isoxazolo[3,4-b]quinolin-3(1H)-ones. Tetrahedron 2015, 71, 8975–8984. [Google Scholar] [CrossRef]
- Rigaku Oxford Diffraction. CrysAlisPro Software System, Version 1.171.38.43c; Rigaku Corporation: Oxford, UK, 2015. [Google Scholar]
- Sheldrick, G.M. SHELXT-Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Reaction Product and Solvent | DFT/ Basis Set | 1H-1 | 7H-1 | 2 | Salt 1 | Iminium Salt 1 | Aminal 1 | Transition State 1 | 3 |
---|---|---|---|---|---|---|---|---|---|
3a H2O | B3LYP/ 6-31+G(d) B3LYP-D3/ 6-31+G(d) | 0.4 | 0 | −13.6 | 2.1 | 5.6 | −5.0 | 11.6 | −11.8 |
0.4 | 0 | 1.0 | 3.8 | 8.6 | 11.9 | 28.2 | 5.2 | ||
0.5 | 0 | −16.5 | 1.8 | 4.5 | −13.6 | 1.9 | −21.7 | ||
0.5 | 0 | −1.8 | 3.9 | 7.5 | 3.2 | 19.1 | −4.0 | ||
B3LYP-D3/ 6−311+G(d,p) | 0.3 | 0 | −17.1 | 3.1 | 1.4 | −16.4 | −0.9 | −24.9 | |
0 | 0.9 | −2.6 | 4.9 | 4.3 | 1.0 | 16.1 | −7.0 | ||
3a MeOH | B3LYP/ 6-31+G(d) B3LYP-D3/ 6-31+G(d) | 0.2 | 0 | −13.9 | 3.8 | 7.3 | −5.0 | 11.8 | −11.0 |
0 | 0 | 0.6 | 6.6 | 10.2 | 11.7 | 28.4 | 5.8 | ||
0.3 | 0 | −16.8 | 3.5 | 6.1 | −17.7 | 2.2 | −20.8 | ||
0.4 | 0 | −2.0 | 6.0 | 9.3 | 3.7 | 19.5 | −3.1 | ||
3b MeOH | B3LYP/ 6-31+G(d) B3LYP-D3/ 6-31+G(d) | 0.2 | 0 | −13.9 | 3.1 | 3.2 | −10.4 | 7.1 | −16.0 |
0 | 0 | 0.6 | 6.1 | 5.4 | 5.3 | 22.7 | 0.3 | ||
0.3 | 0 | −16.8 | 3.1 | 2.6 | −17.4 | −0.9 | −24.1 | ||
0.4 | 0 | −2.0 | 6.3 | 5.2 | −0.9 | 15.8 | −7.6 | ||
3a H2O | ωB97X-Dand/ 6-31+G(d) ωB97X-Dand/ 6-311+G(d,p) | 0 | 0.1 | −19.7 | 1.5 | 3.9 | −18.6 | 3.6 | −27.4 |
0 | 1.0 | −4.8 | 3.1 | 7.0 | −0.1 | 21.3 | −8.6 | ||
0 | 0.3 | −20.4 | 2.9 | 1.2 | −21.5 | 0.8 | −30.7 | ||
0 | 1.5 | −6.3 | 4.1 | 3.6 | 3.7 | 17.9 | −13.3 | ||
3a MeOH | ωB97X-Dand/ 6-31+G(d) | 0 | 0.3 | −20.1 | 3.4 | 5.6 | −18.5 | 3.9 | −26.5 |
0 | 1.2 | −6.2 | 6.6 | 8.8 | 0 | 21.7 | −8.7 |
Reaction Product and Solvent | DFT/ Basis Set | 7H-1c | Salt 1c | Iminium Salt 1c | Aminal 1c | Transition State 1c | 3c |
---|---|---|---|---|---|---|---|
3c (1R,2S) MeOH | B3LYP/ 6-31+G(d) B3LYP-D3/ 6-31+G(d) | 0 | 2.7 | 7.5 | 0 | 16.8 | −4.7 |
0 | 6.7 | 10.4 | 10.4 | 34.2 | 10.6 | ||
0 | 1.9 | 5.5 | −7.2 | 11.6 | −14.7 | ||
0 | 6.1 | 8.8 | 6.9 | 26.3 | 1.8 | ||
3c (1S,2S) MeOH | B3LYP/ 6-31+G(d) B3LYP-D3/ 6-31+G(d) | 0 | 3.1 | 7.5 | 0.9 | 19.4 | −4.4 |
0 | 6.1 | 10.4 | 14.3 | 35.9 | 10.9 | ||
0 | 3.1 | 5.5 | −7.6 | 10.7 | −14.5 | ||
0 | 6.3 | 8.8 | 6.8 | 27.0 | 1.9 |
Solvent | DFT/ Basis Set | 1H-4 | 9H-4 | 5 | Salt 4 | Iminium Salt 4 | Aminal 4 | Transition State 4 | 6 |
---|---|---|---|---|---|---|---|---|---|
H2O | B3LYP/ 6-31+G(d) B3LYP-D3/ 6-31+G(d) | 1.9 | 0 | −11.8 | 2.9 | 6.5 | −5.1 | 7.4 | −17.3 |
1.9 | 0 | 2.7 | 3.6 | 8.5 | 11.0 | 23.0 | −0.8 | ||
2.4 | 0 | −14.7 | 3.0 | 5.7 | −13.5 | −1.4 | −26.7 | ||
2.3 | 0 | 0 | 3.9 | 7.6 | 3.0 | 14.3 | −9.0 | ||
MeOH | B3LYP/ 6-31+G(d) B3LYP-D3/ 6-31+G(d) | 2.2 | 0 | −11.9 | 5.0 | 8.5 | −4.7 | 8.0 | −16.1 |
2.1 | 0 | 2.6 | 6.9 | 10.5 | 11.4 | 23.6 | 0.5 | ||
2.2 | 0 | −14.9 | 4.7 | 7.3 | −25.9 | −1.2 | −25.9 | ||
2.2 | 0 | −0.2 | 5.9 | 9.2 | −8.2 | 14.4 | −8.2 | ||
H2O | ωB97X-Dand/ 6-31+G(d)- | 2.1 | 0 | −17.5 | 3.2 | 5.7 | −18.3 | −0.1 | −26.7 |
2.1 | 0 | −2.7 | 4.0 | 7.5 | −1.3 | 16.2 | −9.0 | ||
MeOH | ωB97X-Dand/ 6-31+G(d)- | 2.4 | 0 | −17.4 | 4.2 | 7.6 | −18.1 | 0.3 | −31.5 |
2.4 | 0 | −2.5 | 6.1 | 9.4 | −1.0 | 16.7 | −13.5 |
Reaction | DFT/ Basis Set | Zwitterion | Salt | Iminium Salt | Aminal | Transition State | Product |
---|---|---|---|---|---|---|---|
A -> 9 B3LYP | B3LYP/ 6-31+G(d) B3LYP-D3/ 6-31+G(d) | 0 | 7.9 | 17.6 | −5.0 | 18.0 | −5.1 |
0 | 9.2 | 19.7 | 11.1 | 33.8 | 12.4 | ||
0 | 7.7 | 17.0 | −12.9 | 7.5 | −17.5 | ||
0 | 9.9 | 19.4 | 3.5 | 24.3 | 1.3 | ||
A -> 9 ωB97XD | ωB97X-Dand/ 6-31+G(d) | 0 | 7.8 | 16.6 | −17.1 | 6.8 | −22.5 |
0 | 9.3 | 18.4 | −0.5 | 22.9 | −3.6 | ||
7 -> B B3LYP | B3LYP/ 6-31+G(d) B3LYP-D3/ 6-31+G(d) | 0 | 7.8 | 16.4 | −7.1 | 12.7 | −3.3 |
0 | 9.3 | 18.3 | 9.9 | 28.3 | 12.5 | ||
0 | 7.9 | 15.9 | −16.1 | 3.0 | −14.4 | ||
0 | 9.4 | 17.4 | 2.7 | 19.9 | 4.8 | ||
7 -> B ωB97XD | ωB97X-Dand/ 6-31+G(d) | 0 | 4.2 | 7.6 | −20.5 | 5.6 | −19.0 |
0 | 6.1 | 9.4 | −3.2 | 22.8 | −0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sączewski, J.; Fedorowicz, J.; Wiśniewska, P.; Gdaniec, M. Theoretical and Experimental Insights into the Tandem Mannich—Electrophilic Amination Reaction: Synthesis of Safirinium Dyes. Appl. Sci. 2021, 11, 5498. https://doi.org/10.3390/app11125498
Sączewski J, Fedorowicz J, Wiśniewska P, Gdaniec M. Theoretical and Experimental Insights into the Tandem Mannich—Electrophilic Amination Reaction: Synthesis of Safirinium Dyes. Applied Sciences. 2021; 11(12):5498. https://doi.org/10.3390/app11125498
Chicago/Turabian StyleSączewski, Jarosław, Joanna Fedorowicz, Paulina Wiśniewska, and Maria Gdaniec. 2021. "Theoretical and Experimental Insights into the Tandem Mannich—Electrophilic Amination Reaction: Synthesis of Safirinium Dyes" Applied Sciences 11, no. 12: 5498. https://doi.org/10.3390/app11125498
APA StyleSączewski, J., Fedorowicz, J., Wiśniewska, P., & Gdaniec, M. (2021). Theoretical and Experimental Insights into the Tandem Mannich—Electrophilic Amination Reaction: Synthesis of Safirinium Dyes. Applied Sciences, 11(12), 5498. https://doi.org/10.3390/app11125498