A Large-Scale Model of Lateral Pressure on a Buried Pipeline in Medium Dense Sand
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chang, C.; Berdiev, A.N.; Lee, C. Energy exports, globalization and economic growth: The case of South Caucasus. Econ. Model. 2013, 33, 333–346. [Google Scholar] [CrossRef]
- Khudayarov, B.A.; Komilova, K.M. Vibration and dynamic stability of composite pipelines conveying a two-phase fluid flows. Eng. Fail. Anal. 2019, 104, 500–512. [Google Scholar] [CrossRef]
- Da Cunha, S.B. A review of quantitative risk assessment of onshore pipelines. J. Loss Prev. Process. Ind. 2016, 44, 282–298. [Google Scholar] [CrossRef]
- Tan, Y.; Lu, Y. Responses of Shallowly Buried Pipelines to Adjacent Deep Excavations in Shanghai Soft Ground. J. Pipeline Syst. Eng. Pr. 2018, 9, 05018002. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, R.; Xu, S.; Wu, Z. Probabilistic analysis of natural gas pipeline network accident based on Bayesian network. J. Loss Prev. Process. Ind. 2017, 46, 126–136. [Google Scholar] [CrossRef]
- Rasouli, H.; Fatahi, B. Geofoam blocks to protect buried pipelines subjected to strike-slip fault rupture. Geotext. Geomembr. 2020, 48, 257–274. [Google Scholar] [CrossRef]
- Rajani, B.B.; Robertson, P.K.; Morgenstern, N.R.; Rajani, B.B.; Robertson, P.K.; Morgenstern, N.R. Simplified design methods for pipelines subject to transverse and longitudinal soil movements. Can. Geotech. J. 1995, 32, 309–323. [Google Scholar] [CrossRef]
- Meidani, M.; Meguid, M.A.; Chouinard, L.E. Evaluation of Soil–Pipe Interaction under Relative Axial Ground Movement. J. Pipeline Syst. Eng. Pr. 2017, 8, 04017009. [Google Scholar] [CrossRef]
- Feng, W.; Huang, R.; Liu, J.; Xu, X.; Luo, M. Large-scale field trial to explore landslide and pipeline interaction. Soils Found. 2015, 55, 1466–1473. [Google Scholar] [CrossRef] [Green Version]
- Rammah, K.I.; Oliveira, J.R.M.S.; Almeida, M.C.F.; Almeida, M.S.S.; Borges, R.G. Centrifuge modelling of a buried pipeline below an embankment. Int. J. Phys. Model. Geotech. 2014, 14, 116–127. [Google Scholar] [CrossRef]
- Trautmann, C.H.; O’Rourke, T.D. Lateral Force-Displacement Response Of Buried Pipe. J. Geotech. Eng. 1985, 111, 1077–1092. [Google Scholar] [CrossRef]
- Rowe, R.K.; Davis, E.H. The behaviour of plate anchors in sand. Geotechnique 1982, 32, 25–41. [Google Scholar] [CrossRef]
- Di Prisco, C.; Galli, A. Soil-pipe interaction under monotonic and cyclic loads: Experimental and numerical modelling. In Proceedings of the 1st Euromediterranean Symposium on Advances in Geomaterials and Structures, Hammamet, Tunisia, 3–5 May 2006; pp. 755–760. [Google Scholar]
- Phillips, R.; Nobahar, A.; Zhou, J. Combined axial and lateral pipe-soil interaction relationships. In Proceedings of the 2004 International Pipeline Conference, Calgary, AB, Canada, 4–8 October 2004; pp. 299–303. [Google Scholar] [CrossRef]
- Rourke, M.J.O.; Liu, J.X. Seismic Design of Buried and Offshore Pipelines; MCEER Monograph MCEER-12-MN04; MCEER: Buffalo, NY, USA, 2012; p. 380. [Google Scholar]
- Audibert, J.M.; Nyman, K.J. Soil restraint against horizontal motion of pipes. J. Geotech. Eng. Div. 1977, 103, 1119–1142. [Google Scholar] [CrossRef]
- Paulin, M. An Investigation into Pipelines Subjected to Lateral Soil Loading. Ph.D. Thesis, Memorial University of Newfoundland, St. John’s, NL, Canada, 1998. [Google Scholar]
- Tian, Y.; Cassidy, M.J. Pipe-Soil Interaction Model Incorporating Large Lateral Displacements in Calcareous Sand. J. Geotech. Geoenviron. Eng. 2011, 137, 279–287. [Google Scholar] [CrossRef]
- Francesco, C.; Claudio, D.; Roberto, N. Experimental and Numerical Analysis of Soil-Pipe Interaction. J. Geotech. Geoenviron. Eng. 2004, 130, 1042–1050. [Google Scholar] [CrossRef]
- Liu, R.; Guo, S.; Yan, S. Study on the lateral soil resistance acting on the buried pipeline. J. Coast. Res. 2015, 73, 391–398. [Google Scholar] [CrossRef]
- Sahdi, F.; Gaudin, C.; White, D.; Boylan, N.; Randolph, M. Centrifuge modelling of active slide-pipeline loading in soft clay. Géotechnique 2014, 64, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Almahakeri, M.; Asce, M.; Fam, A.; Asce, M.; Moore, I.D.; Asce, M. Experimental Investigation of Longitudinal Bending of Buried Steel Pipes Pulled through Dense Sand. J. Pipeline Syst. Eng. Pr. 2014, 5, 04013014. [Google Scholar] [CrossRef]
- Ono, K.; Yokota, Y.; Sawada, Y.; Kawabata, T. Lateral force–displacement prediction for buried pipe under different effective stress condition. Int. J. Geotech. Eng. 2018, 12, 420–428. [Google Scholar] [CrossRef]
- Roy, K.S.; Hawlader, B. Soil restraint against lateral and oblique motion of pipes buried in dense sand. Proc. Bienn. Int. Pipeline Conf. IPC 2012, 4, 7–12. [Google Scholar] [CrossRef]
- Zhang, J.; Stewart, D.P.; Randolph, M.F. Modeling of Shallowly Embedded Offshore Pipelines in Calcareous Sand. J. Geotech. Geoenviron. Eng. 2002, 128, 363–371. [Google Scholar] [CrossRef]
- Oliveira, J.R.M.S.; Almeida, M.S.S.; Almeida, M.C.F.; Borges, R.G. Physical Modeling of Lateral Clay-Pipe Interaction. J. Geotech. Geoenviron. Eng. 2010, 136, 950–956. [Google Scholar] [CrossRef]
- Alarifi, H.; Mohamad, H.; Isah, B.W.; Wahab, M.M. A Physical modelling of lateral soil displacement and pipeline movement due to landslide. Proceedings of International Conference on Landslide and Slope Stability (SLOPE 2019), Bali, Indonesia, 26–27 September 2019; pp. 1–9. [Google Scholar]
- Alarifi, H.; Mohamad, H. Estimation of the buried pipeline displacement using distributed fibre optic sensing: An experimental study. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1101, 012004. [Google Scholar] [CrossRef]
- ASTM. Standard Test Methods for Density of Soil and Rock in Place by the Sand Replacement Method in a Test Pit; ASTM D4914-99; ASTM: West Conshohocken, PA, USA, 2007. [Google Scholar]
- Chen, L.; Wu, S.; Lu, H.; Huang, K.; Lv, Y.; Wu, J. Stress Analysis of Buried Gas Pipeline Traversing Sliding Mass. Open Civ. Eng. J. 2014, 8, 257–261. [Google Scholar] [CrossRef]
Soil | HDPE Pipe | ||
---|---|---|---|
Class | Poorly Graded Sand | Class | (HDPE) PN 16 |
D10 D30 D60 | 0.12 mm 0.24 mm 0.51 mm | Tensile strain (break) | 600% |
Density | 1606 kg/m3 | Density | 0.951 g/cm3 |
Friction angle | 38.69⁰ | Diameter | 90 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alarifi, H.; Mohamad, H.; Nordin, N.F.; Yusoff, M.; Rafindadi, A.D.; Widjaja, B. A Large-Scale Model of Lateral Pressure on a Buried Pipeline in Medium Dense Sand. Appl. Sci. 2021, 11, 5554. https://doi.org/10.3390/app11125554
Alarifi H, Mohamad H, Nordin NF, Yusoff M, Rafindadi AD, Widjaja B. A Large-Scale Model of Lateral Pressure on a Buried Pipeline in Medium Dense Sand. Applied Sciences. 2021; 11(12):5554. https://doi.org/10.3390/app11125554
Chicago/Turabian StyleAlarifi, Hamzh, Hisham Mohamad, Nor Faridah Nordin, Muhammad Yusoff, Aminu Darda’u Rafindadi, and Budijanto Widjaja. 2021. "A Large-Scale Model of Lateral Pressure on a Buried Pipeline in Medium Dense Sand" Applied Sciences 11, no. 12: 5554. https://doi.org/10.3390/app11125554
APA StyleAlarifi, H., Mohamad, H., Nordin, N. F., Yusoff, M., Rafindadi, A. D., & Widjaja, B. (2021). A Large-Scale Model of Lateral Pressure on a Buried Pipeline in Medium Dense Sand. Applied Sciences, 11(12), 5554. https://doi.org/10.3390/app11125554