Complementary Metaresonator Sensor with Dual Notch Resonance for Evaluation of Vegetable Oils in C and X Bands
Abstract
:1. Introduction
2. Design of Metaresonator Sensor
3. Measurement Setup
4. Mathematical Modeling for Oil Characterization
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, F.; Zheng, Y.; Hua, C.; Jian, J. Gas sensing by microwave transduction: Review of progress and challenges. Front. Mater. 2019, 6, 101. [Google Scholar] [CrossRef]
- Park, J.K.; Kang, T.G.; Kim, B.H.; Lee, H.J.; Choi, H.H.; Yook, J.G. Real-time Humidity Sensor Based on Microwave Resonator Coupled with PEDOT:PSS Conducting Polymer Film. Sci. Rep. 2018, 8, 439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Ruan, C.; Haq, T.; Chen, K. High-Sensitivity Microwave Sensor for Liquid Characterization Using a Complementary Circular Spiral Resonator. Sensors 2019, 19, 787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Amineh, R.K.; Dong, Z.; Nadler, D. Microwave Sensing of Water Quality. IEEE Access 2019, 7, 69481–69493. [Google Scholar] [CrossRef]
- Haq, T.; Ruan, C.; Zhang, X.; Ullah, S.; Fahad, A.K. Complementary Metamaterial based Dual Notch Microwave Sensor. In Proceedings of the 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Shanghai, China, 20–23 September 2020. [Google Scholar]
- Haq, T.; Ruan, C.; Zhang, X.; Ullah, S.; Fahad, A.K. Microwave Sensor Based on Complementary Spiral Resonator with Fitting Equation to Evaluate Dielectric Substrates. In Proceedings of the 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Guangzhou, China, 19–22 May 2019. [Google Scholar]
- Veselago, V.G. The electrodynamics of substances with simultaneously negative values of ϵ and µ. Sov. Phys. Uspekhi 1968, 10, 509–514. [Google Scholar] [CrossRef]
- Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 2000, 84, 4184–4187. [Google Scholar] [CrossRef] [Green Version]
- Falcone, F.; Lopetegi, T.; Baena, J. Effective Negative-ϵ Stopband Microstrip Lines Based on Complementary Split Ring Resonators. IEEE Microw. Wirel. Components Lett. 2004, 14, 280–282. [Google Scholar] [CrossRef]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 1999, 47, 2075–2084. [Google Scholar] [CrossRef] [Green Version]
- Omer, A.E.; Shaker, G.; Safavi-Naeini, S.; Kokabi, H.; Alquié, G.; Deshours, F.; Shubair, R.M. Low-cost portable microwave sensor for non-invasive monitoring of blood glucose level: Novel design utilizing a four-cell CSRR hexagonal configuration. Sci. Rep. 2020, 10, 15200. [Google Scholar] [CrossRef]
- Zarifi, M.H.; Sadabadi, H.; Hejazi, S.H.; Daneshmand, M.; Sanati-Nezhad, A. Noncontact and Nonintrusive Microwave-Microfluidic Flow Sensor for Energy and Biomedical Engineering. Sci. Rep. 2018, 8, 139. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, A.; Tovar-Lopez, F.J.; Scott, J.; Ghorbani, K. Differential microwave sensor for characterization of glycerol–water solutions. Sens. Actuators B Chem. 2020, 321, 1–8. [Google Scholar] [CrossRef]
- Javed, A.; Arif, A.; Zubair, M.; Mehmood, M.Q.; Riaz, K. A Low-Cost Multiple Complementary Split-Ring Resonator-Based Microwave Sensor for Contactless Dielectric Characterization of Liquids. IEEE Sens. J. 2020, 20, 11326–11334. [Google Scholar] [CrossRef]
- Haq, T.; Ruan, C.; Zhang, X.; Ullah, S. Complementary Metamaterial Sensor for Nondestructive Evaluation of Dielectric Substrates. Sensors 2019, 19, 2100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, L.C.; Zhao, W.S.; Gan, H.Y.; He, L.; Liu, Q.; Dong, L.; Wang, G. A high-Q active substrate integrated waveguide based sensor for fully characterizing magneto-dielectric (MD) materials. Sens. Actuators A Phys. 2020, 301, 111778. [Google Scholar] [CrossRef]
- Delayen, J.R.; Dick, G.J.; Mercereau, J.E. Test of A β≃ 0.1 superconducting split ring resonator. IEEE Trans. Magn. 1981, 17, 939–942. [Google Scholar] [CrossRef]
- Marqués, R.; Martel, J.; Mesa, F.; Medina, F. Left-Handed-Media Simulation and Transmission of EM Waves in Subwavelength Split-Ring-Resonator-Loaded Metallic Waveguides. Phys. Rev. Lett. 2002, 89, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Eleftheriades, G.V.; Iyer, A.K.; Kremer, P.C. Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Trans. Microw. Theory Tech. 2002, 50, 2702–2712. [Google Scholar] [CrossRef]
- Grbic, A.; Eleftheriades, G.V. Experimental verification of backward-wave radiation from a negative refractive index metamaterial. J. Appl. Phys. 2002, 92, 5930–5935. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, O.F.; Mojahedi, M.; Eleftheriades, G.V. Periodically Loaded Transmission Line with Effective Negative Refractive Index and Negative Group Velocity. IEEE Trans. Antennas Propag. 2003, 51, 2619–2625. [Google Scholar] [CrossRef]
- Martín, F.; Falcone, F.; Bonache, J.; Marqués, R.; Sorolla, M. Miniaturized Coplanar Waveguide Stop Band Filters Based on Multiple Tuned Split Ring Resonators. IEEE Microw. Wirel. Components Lett. 2003, 13, 511–513. [Google Scholar] [CrossRef]
- Falcone, F.; Martín, F.; Bonache, J.; Marqués, R.; Lopetegi, T.; Sorolla, M. Left Handed Coplanar Waveguide Band Pass Filters Based on Bi-layer Split Ring Resonators. IEEE Microw. Wirel. Components Lett. 2004, 14, 10–12. [Google Scholar] [CrossRef]
- Naqui, J.; Durán-Sindreu, M.; Martín, F. Alignment and position sensors based on split ring resonators. Sensors 2012, 12, 11790–11797. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Lee, H.S.; Yoo, K.H.; Yook, J.G. DNA sensing using split-ring resonator alone at microwave regime. J. Appl. Phys. 2010, 108, 1–6. [Google Scholar] [CrossRef]
- Mata-Contreras, J.; Herrojo, C.; Martin, F. Application of Split Ring Resonator (SRR) Loaded Transmission Lines to the Design of Angular Displacement and Velocity Sensors for Space Applications. IEEE Trans. Microw. Theory Tech. 2017, 65, 4450–4460. [Google Scholar] [CrossRef] [Green Version]
- Wiltshire, B.D.; Rafi, M.A.; Zarifi, M.H. Microwave resonator array with liquid metal selection for narrow band material sensing. Sci. Rep. 2021, 11, 8598. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Withayachumnankul, W.; Al-Sarawi, S.F.; Abbott, D. Metamaterial-inspired rotation sensor with wide dynamic range. IEEE Sens. J. 2014, 14, 2609–2614. [Google Scholar] [CrossRef] [Green Version]
- Thai, T.T.; Aubert, H.; Pons, P.; Dejean, G.; Mtentzeris, M.; Plana, R. Novel design of a highly sensitive RF strain transducer for passive and remote sensing in two dimensions. IEEE Trans. Microw. Theory Tech. 2013, 61, 1385–1396. [Google Scholar] [CrossRef]
- Galindo-Romera, G.; Javier Herraiz-Martínez, F.; Gil, M.; Martínez-Martínez, J.J.; Segovia-Vargas, D. Submersible Printed Split-Ring Resonator-Based Sensor for Thin-Film Detection and Permittivity Characterization. IEEE Sens. J. 2016, 16, 3587–3596. [Google Scholar] [CrossRef]
- Herrojo, C.; Mata-Contreras, J.; Paredes, F.; Martín, F. Microwave Encoders for Chipless RFID and Angular Velocity Sensors Based on S-Shaped Split Ring Resonators. Appl. Phys. Lett. 2017, 17, 4805–4813. [Google Scholar] [CrossRef] [Green Version]
- Falcone, F.; Lopetegi, T.; Laso, M.A.G.; Baena, J.D.; Bonache, J.; Beruete, M.; Marques, R.; Martín, F.; Sorolla, M. Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett. 2004, 93, 2–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonache, J.; Gil, M.; Gil, I.; García-garcía, J.; Martín, F. On the Electrical Characteristics of Complementary Metamaterial Resonators. IEEE Microw. Wirel. Components Lett. 2006, 16, 543–545. [Google Scholar] [CrossRef]
- Haq, T.; Khan, M.F.; Siddiqui, O.F. Design and implementation of waveguide bandpass filter using complementary metaresonator. Appl. Phys. A Mater. Sci. Process. 2016, 122, 1–5. [Google Scholar] [CrossRef]
- Haq, T.; Ruan, C.; Ullah, S.; Kosar, A. Reconfigurable Ultra Wide Band Notch Filter based on Complementary Metamaterial. In Proceedings of the IEEE Asia-Pacific Conference on Antennas and Propagation, Auckland, New Zealand, 5–8 August 2018; pp. 381–382. [Google Scholar]
- Lee, C.S.; Yang, C.L. Complementary split-ring resonators for measuring dielectric constants and loss tangents. IEEE Microw. Wirel. Components Lett. 2014, 24, 563–565. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Scott, J.; Ghorbani, K. Ultrahigh-Sensitivity Microwave Sensor for Microfluidic Complex Permittivity Measurement. IEEE Trans. Microw. Theory Tech. 2019, 67, 4269–4277. [Google Scholar] [CrossRef]
- Yang, C.; Lee, C.; Chen, K.; Chen, K. Noncontact Measurement of Complex Permittivity and Thickness by Using Planar Resonators. IEEE Trans. Microw. Theory Tech. 2016, 64, 247–257. [Google Scholar] [CrossRef]
- Haq, T.; Ruan, C.; Zhang, X.; Ullah, S.; Fahad, A.K.; He, W. Extremely sensitive microwave sensor for evaluation of dielectric characteristics of low-permittivity materials. Sensors 2020, 20, 1916. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, N.K.; Singh, S.P.; Akhtar, M.J. Novel Improved Sensitivity Planar Microwave Probe for Adulteration Detection in Edible Oils. IEEE Microw. Wirel. Components Lett. 2019, 29, 164–166. [Google Scholar] [CrossRef]
- Su, L.; Mata-Contreras, J.; Vélez, P.; Fernández-Prieto, A.; Martín, F. Analytical method to estimate the complex permittivity of oil samples. Sensors 2018, 18, 984. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, S.A.; Abidin, Z.Z.; Ashyap, A.Y.I.; Majid, H.A.; Kamarudin, M.R.; Yue, M.; Zulkipli, M.S.; Nebhen, J. Millimetre-Wave Metamaterial-Based Sensor for Characterisation of Cooking Oils. Int. J. Antennas Propag. 2021, 1, 1–10. [Google Scholar] [CrossRef]
- Zhang, X.; Ruan, C.; Wang, W.; Cao, Y. Submersible High Sensitivity Microwave Sensor for Edible Oil Detection and Quality Analysis. IEEE Sens. J. 2021, 1, 1–9. [Google Scholar]
- Hong, J.-S. Microstrip Filters for RF/Microwave Applications; Wiley and Sons: New York, NY, USA, 2011; ISBN 9780470408773. [Google Scholar]
- Haq, T.; Ruan, C.; Zhang, X.; Kosar, A.; Ullah, S. Low cost and compact wideband microwave notch filter based on miniaturized complementary metaresonator. Appl. Phys. A Mater. Sci. Process. 2019, 125, 1–7. [Google Scholar] [CrossRef]
- Arif Hussain Ansari, M.; Jha, A.K.; Akhter, Z.; Jaleel Akhtar, M. Multi-Band RF Planar Sensor Using Complementary Split Ring Resonator for Testing of Dielectric Materials. IEEE Sens. J. 2018, 18, 6596–6606. [Google Scholar] [CrossRef]
- Mohamad, N.A.; Azis, N.; Jasni, J.; Ab Kadir, M.Z.A.; Yunus, R.; Ishak, M.T.; Yaakub, Z. A study on the dielectric properties of Palm Oil and Coconut Oil. In Proceedings of the 2014 IEEE International Conference on Power and Energy (PECon), Kuching, Malaysia, 1–3 December 2014. [Google Scholar]
- Haq, T.; Ruan, C.; Ullah, S.; Kosar Fahad, A. Dual Notch Microwave Sensors Based on Complementary Metamaterial Resonators. IEEE Access 2019, 7, 153489–153498. [Google Scholar] [CrossRef]
- Armghan, A.; Alanaz, T.M.; Altaf, A.; Haq, T. Characterization of Dielectric Substrates Using Dual Band Microwave Sensor. IEEE Access 2021, 9, 62779–62787. [Google Scholar] [CrossRef]
- Memon, M.U.; Lim, S. Millimeter-wave chemical sensor using substrate-integrated-waveguide cavity. Appl. Sens. 2016, 16, 1829. [Google Scholar] [CrossRef] [Green Version]
- Chuma, E.L.; Iano, Y.; Fontgalland, G.; Bravo Roger, L.L. Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator. IEEE Sens. J. 2018, 18, 9978–9983. [Google Scholar] [CrossRef]
- Herrera-Sepulveda, L.V.; Olvera-Cervantes, J.L.; Corona-Chavez, A.; Kaur, T. Sensor and methodology for determining dielectric constant using electrically coupled resonators. IEEE Microw. Wirel. Components Lett. 2019, 29, 626–628. [Google Scholar] [CrossRef]
- Juan, C.G.; Potelon, B.; Quendo, C.; Bronchalo, E.; Sabater-Navarro, J.M. Highly-Sensitive Glucose Concentration Sensor Exploiting Inter-resonators Couplings. In Proceedings of the 49th European Microwave ConferenceAt, Paris, France, 1–3 October 2019; pp. 662–665. [Google Scholar]
- Juan, C.G.; Bronchalo, E.; Potelon, B.; Quendo, C.; Ávila-Navarro, E.; Sabater-Navarro, J.M. Concentration Measurement of Microliter-Volume Water-Glucose Solutions Using Q Factor of Microwave Sensors. IEEE Trans. Instrum. Meas. 2019, 68, 2621–2634. [Google Scholar] [CrossRef]
- Mohammadi, S.; Nadaraja, A.V.; Luckasavitch, K.; Jain, M.C.; June Roberts, D.; Zarifi, M.H. A Label-Free, Non-Intrusive, and Rapid Monitoring of Bacterial Growth on Solid Medium Using Microwave Biosensor. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 2–11. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Deng, L.; Karaaslan, M.; Altıntaş, O.; Awl, H.N.; Muhammadsharif, F.F.; Liao, C.; Unal, E.; Luo, H. Novel metamaterials-based hypersensitized liquid sensor integrating omega-shaped resonator with microstrip transmission line. Sensors 2020, 20, 943. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, A.; Scott, J.; Ghorbani, K. Microwave reflective biosensor for glucose level detection in aqueous solutions. Sens. Actuators A Phys. 2020, 301, 1–8. [Google Scholar] [CrossRef]
- Zarifi, M.H.; Daneshmand, M. Liquid sensing in aquatic environment using high quality planar microwave resonator. Sens. Actuators B Chem. 2016, 225, 517–521. [Google Scholar] [CrossRef]
- Velez, P.; Su, L.; Grenier, K.; Mata-Contreras, J.; Dubuc, D.; Martin, F. Microwave Microfluidic Sensor Based on a Microstrip Splitter/Combiner Configuration and Split Ring Resonators (SRRs) for Dielectric Characterization of Liquids. IEEE Sens. J. 2017, 17, 6589–6598. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Mata-Contreras, J.; Vélez, P.; Martín, F. Configurations of splitter/combiner microstrip sections loaded with stepped impedance resonators (SIRs) for sensing applications. Sensors 2016, 16, 2195. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Mata-Contreras, J.; Vélez, P.; Martín, F. Splitter/Combiner Microstrip Sections Loaded With Pairs of Complementary Split Ring Resonators Differential Sensing Applications. IEEE Trans. Microw. Theory Tech. 2016, 64, 4362–4370. [Google Scholar] [CrossRef]
Analysis Area | Size | 25 × 30 × 1.6 mm |
Boundary Condition | Radiation | |
Cells | Number | 14,201 |
Shape | Tetrahedron | |
Feed | Wave port (50 Ω) | |
Solution Type | Driven Model | |
Frequency Sweep | 0.1 GHz to 30 GHz | |
Convergence condition determination | Maximum number of passes; 20 Maximum delta S; 0.02 |
Name | Chemical Name | Molecular Formula | Iodine Contents (gI/100 g) | Dielectric Constant | Dielectric Loss Tangent |
---|---|---|---|---|---|
Corn Oil | - | - | 110 | 2.526 | 0.0566 |
Coconut Oil | Trilaurin | - | 2.83 | - | |
Olive Oil | Triolein | 84 | 3.352 | 0.0331 | |
Castor Oil | Triricinolein | 85 | 4.47 | 0.0322 |
Oil Under Test (OUT) | Dielectric Constant | Measured First Resonance Frequency (GHz) | Notch Depth (dB) | Measured Second Resonance Frequency (GHz) | Notch Depth (dB) |
---|---|---|---|---|---|
Air | 1.0006 | 7.20 | −23.51 | 8.93 | −21.57 |
Corn Oil | 2.526 | 6.72 | −18.71 | 8.22 | −20.21 |
Coconut Oil | 2.83 | 6.64 | −18.39 | 8.12 | −20.14 |
Olive Oil | 3.352 | 6.50 | −19.28 | 7.91 | −21.06 |
Castor Oil | 4.47 | 6.26 | −18.43 | 7.56 | −21.11 |
Oil Under Test (OUT) | Dielectric Constant | Sensitivity of First Resonance (%) | Sensitivity of Second Resonance (%) |
---|---|---|---|
Corn Oil | 2.526 | 31.4 | 46.5 |
Coconut Oil | 2.83 | 30.6 | 44.2 |
Olive Oil | 3.352 | 29.7 | 43.3 |
Castor Oil | 4.47 | 27 | 39.4 |
Oil Under Test (OUT) | Dielectric Constant | Measured (GHz) | Formulated (GHz) | Measured (GHz) | Formulated (GHz) |
---|---|---|---|---|---|
Air | 1.0006 | 7.20 | 7.13 | 8.93 | 8.85 |
Corn Oil | 2.526 | 6.72 | 6.75 | 8.22 | 8.26 |
Coconut Oil | 2.83 | 6.64 | 6.67 | 8.12 | 8.15 |
Olive Oil | 3.352 | 6.50 | 6.53 | 7.91 | 7.94 |
Castor Oil | 4.47 | 6.26 | 6.22 | 7.56 | 7.51 |
References | Sensor Design | Method of Sensing | Operating Frequency (GHz) | Sensitivity (GHz) | Applications |
---|---|---|---|---|---|
[41] | CSRR | Transmission Coefficient S21 | 2.52 | 0.08 | Oil Characterization |
[50] | SIW | Reflection Coefficient S11 | 16 | 0.14 | Chemical |
[51] | CSRR | Transmission Coefficient S | 2.3 | 0.1 | Water-Ethanol Mixtures |
[52] | ECRs | Electric Coupling Coefficient ke | - | - | Dielectric Materials |
[53] | OLSIR | Electric Coupling | 4.40 | - | Glucose Concentration |
[54] | OLMR | Unloaded Q factor | 1.92 | 0.46 | Glucose Concentration |
[55] | PSRR | Transmission Coefficient S21 | 1.9 | 0.2 | Bacterial Growth |
[56] | Omega | Transmission Coefficient S21 | 2 | 0.05 | Methanol |
[57] | M-CRR | Transmission Coefficient S21 | 2.4 | 0.06 | Liquids |
[58] | PMWR | Transmission Coefficient S21 | 1.5 | 0.01 | Liquids |
[59] | SRRs | Transmission Coefficient S21 | 0.87 | 0.07 | Liquids |
[60] | SIRs | Transmission Coefficient S21 | 3 | 0.05 | Dielectric Materials |
[61] | CSRRs | Transmission Coefficient S21 | 1.7 | 0.03 | Substrates |
Proposed | CMSSR | Transmission Coefficient S21 | 7.20 | 0.48 | Vegetable Oils |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armghan, A. Complementary Metaresonator Sensor with Dual Notch Resonance for Evaluation of Vegetable Oils in C and X Bands. Appl. Sci. 2021, 11, 5734. https://doi.org/10.3390/app11125734
Armghan A. Complementary Metaresonator Sensor with Dual Notch Resonance for Evaluation of Vegetable Oils in C and X Bands. Applied Sciences. 2021; 11(12):5734. https://doi.org/10.3390/app11125734
Chicago/Turabian StyleArmghan, Ammar. 2021. "Complementary Metaresonator Sensor with Dual Notch Resonance for Evaluation of Vegetable Oils in C and X Bands" Applied Sciences 11, no. 12: 5734. https://doi.org/10.3390/app11125734
APA StyleArmghan, A. (2021). Complementary Metaresonator Sensor with Dual Notch Resonance for Evaluation of Vegetable Oils in C and X Bands. Applied Sciences, 11(12), 5734. https://doi.org/10.3390/app11125734