Synthesis of Ambient Cured GGBFS Based Alkali Activated Binder Using a Sole Alkaline Activator: A Feasibility Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipment
2.3. Preparations of Alkali Activated GGBFS to Determine the Optimum Curing Conditions
2.4. Unconfined Compressive Strength (UCS) Testing
2.5. Metal Leachability of the AAMs
2.6. Determination of Open Porosity, Volume of Permeable Pores and Absorption Rate
3. Results
3.1. Unconfined Compressive Strength
3.1.1. Effect of NaOH Concentration
3.1.2. Effect of Liquid-Solid Ratio
3.1.3. Effect of Curing Age at Ambient Temperature
3.2. XRD Analysis of Samples with a Variation of Curing Period
3.3. Effect of Curing Age (Days) on the Morphology
3.4. Leachability
4. Conclusions
- The mechanical strength of the alkali activated GGBFS composites is highly dependent on the concentration of the alkaline activator, curing period and the L/S ratio.
- The most favourable condition to synthesize alkali activated GGBFS composites was a concentration of 15 M NaOH solution at a L/S ration of 15%, cured for 90 days.
- The long-term curing significantly improved the mechanical strength of the composites by achieving the highest UCS of 61. 43 MPa which is 27% higher compared to composites cured for a short term (sample M10).
- The synthesized composites did not have any potential environmental impacts as the leached heavy metal concentrations of all composites were insignificant and within the allowed USEPA limits.
- The study also shows that alkali activated cementitious material can be synthesized by just using a sole alkaline activator without addition of a silica reactive source.
- Using the mechanical strength criterion, the developed composites meet ASTM specifications for different applications in building and construction such as facing and solid masonry brick and pavement block and can be used as an alternative binding material.
- Further studies on using the synthesized alkali activated composite should be tested as a binder to develop building and construction materials.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Díaz, Y.C.; Berriel, S.S.; Heierli, U.; Favier, A.R.; Machado, I.R.S.; Scrivener, K.L.; Hernández, J.F.M.; Habert, G. Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies. Dev. Eng. 2017, 2, 82–91. [Google Scholar] [CrossRef]
- Zannerni, G.M.; Fattah, P.; Al-Tamimi, A.K. Ambient-Cured geopolymer concrete with single alkali activator. Sustain. Mater. Technol. 2020, 23, e00131. [Google Scholar] [CrossRef]
- Robayo-Salazar, R.A.; De Gutiérrez, M.; Puertas, F. Study of synergy between a natural volcanic pozzolan and a granulated blast furnace slag in the production of geopolymeric pastes and mortars. Constr. Build. Mater. 2017, 157, 151–160. [Google Scholar] [CrossRef]
- Nwankwo, C.O.; Bamigboye, G.O.; Davies, E.; Michaels, T.A. High volume Portland cement replacement: A review. Constr. Build. Mater. 2020, 260, 120445. [Google Scholar] [CrossRef]
- Habert, G. Assessing the environmental impact of conventional and ‘green’cement production. In Eco-Efficient Construction and Building Materials; Woodhead Publishing: Cambridge, UK, 2014; pp. 199–238. [Google Scholar]
- Wi, K.; Lee, H.S.; Lim, S.; Song, H.; Hussin, M.W.; Ismail, M.A. Use of an agricultural by-product, nano sized palm oil fuel ash as a supplementary cementitious material. Constr. Build. Mater. 2018, 183, 139–149. [Google Scholar] [CrossRef]
- Naqi, A.; Jang, J.G. Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: A review. Sustainability 2019, 11, 537. [Google Scholar] [CrossRef] [Green Version]
- Shubbar, A.A.; Sadique, M.; Shanbara, H.K.; Hashim, K. The development of a new low carbon binder for construction as an alternative to cement. In Advances in Sustainable Construction Materials and Geotechnical Engineering; Springer: Singapore, 2020; pp. 205–213. [Google Scholar]
- Sithole, N.T.; Okonta, F.; Ntuli, F. Mechanical properties and structure of fly ash modified basic oxygen furnace slag based geopolymer masonry blocks. J. Solid Waste Technol. Manag. 2020, 46, 372–383. [Google Scholar] [CrossRef]
- Sanjuán, M.Á.; Andrade, C.; Mora, P.; Zaragoza, A. Carbon dioxide uptake by cement-based materials: A Spanish case study. Appl. Sci. 2020, 10, 339. [Google Scholar] [CrossRef] [Green Version]
- Cement Sustainability Initiative. In Technology Roadmap: Low-Carbon Technology for the INDIAN Cement Industry; World Business Council for Sustainable Development and International Energy Agency: Geneva, Switzerland, 2013.
- Singh, N.B.; Middendorf, B. Geopolymers as an alternative to Portland cement: An overview. Constr. Build. Mater. 2020, 237, 117–455. [Google Scholar] [CrossRef]
- Sithole, N.T.; Okonta, F.; Ntuli, F. Development of lightweight construction blocks by alkaline activation of bof slag. J. Solid Waste Technol. Manag. 2019, 45, 175–185. [Google Scholar] [CrossRef]
- Madani, H.; Ramezanianpour, A.A.; Shahbazinia, M.; Ahmadi, E. Geopolymer bricks made from less active waste materials. Constr. Build. Mater. 2020, 247, 118441. [Google Scholar] [CrossRef]
- Sithole, N.T.; Mashifana, T. Geosynthesis of building and construction materials through alkaline activation of granulated blast furnace slag. Constr. Build. Mater. 2020, 264, 120712. [Google Scholar] [CrossRef]
- Mashifana, T.; Sithole, T. Recovery of silicon dioxide from waste foundry sand and alkaline activation of desilicated foundry sand. J. Sustain. Metall. 2020, 6, 700–714. [Google Scholar] [CrossRef]
- Abdullah, M.M.; Ming, L.Y.; Yong, H.C.; Tahir, M.F. Clay-Based materials in geopolymer technology. In Cement Based Materials; InTech: London, UK, 2018; p. 239. [Google Scholar]
- Bong, S.H.; Nematollahi, B.; Nazari, A.; Xia, M.; Sanjayan, J. Efficiency of different superplasticizers and retarders on properties of one-part’ fly ash-slag blended geopolymers with different activators. Materials 2019, 12, 3410. [Google Scholar] [CrossRef] [Green Version]
- Murri, A.N.; Rickard, W.D.A.; Bignozzi, M.C.; Van Riessen, A. High temperature behaviour of ambient cured alkali-activated materials based on ladle slag. Cem. Concr. Res. 2013, 43, 51–61. [Google Scholar] [CrossRef]
- Rafeet, A.; Vinai, R.; Soutsos, M.; Sha, W. Effects of slag substitution on physical and mechanical properties of fly ash-based alkali activated binders (AABs). Cem. Concr. Res. 2019, 122, 118–135. [Google Scholar] [CrossRef]
- Temuujin, J.V.; Van Riessen, A.; Williams, R. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. J. Hazard. Mater. 2009, 167, 82–88. [Google Scholar] [CrossRef]
- Mejía, J.M.; de Gutiérrez, R.M.; Montes, C. Rice husk ash and spent diatomaceous earth as a source of silica to fabricate a geopolymeric binary binder. J. Clean. Prod. 2016, 118, 133–139. [Google Scholar] [CrossRef]
- Živica, V. Effectiveness of new silica fume alkali activator. Cem. Concr. Compos. 2006, 28, 21–25. [Google Scholar] [CrossRef]
- Allahverdi, A.; Mehrpour, K.; Kani, E.N. Investigating the possibility of utilizing pumice-type natural pozzonal in production of geopolymer cement. Ceram. Silik. 2008, 52, 16. [Google Scholar]
- Falayi, T. Sustainable solidification of ferrochrome slag through geopolymerisation: A look at the effect of curing time, type of activator and liquid solid ratio. Sustain. Environ. Res. 2019, 29, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Tekin, I.; Gencel, O.; Gholampour, A.; Oren, O.H.; Koksal, F.; Ozbakkaloglu, T. Recycling zeolitic tuff and marble waste in the production of eco-friendly geopolymer concretes. J. Clean. Prod. 2020, 268, 122298. [Google Scholar] [CrossRef]
- Nadoushan, M.J.; Ramezanianpour, A. The effect of type and concentration of activators on flowability and compressive strength of natural pozzolan and slag-based geopolymers. Constr. Build. Mater. 2016, 111, 337–347. [Google Scholar] [CrossRef]
- Ma, C.; Long, G.; Shi, Y.; Xie, Y. Preparation of cleaner one-part geopolymer by investigating different types of commercial sodium metasilicate in China. J. Clean. Prod. 2018, 201, 636–647. [Google Scholar] [CrossRef]
- Falayi, T. A comparison between fly ash-and basic oxygen furnace slag-modified gold mine tailings geopolymers. Int. J. Energy Environ. Eng. 2019, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Nematollahi, B.; Qiu, J.; Yang, E.H.; Sanjayan, J. Micromechanics constitutive modelling and optimization of strain hardening geopolymer composite. Ceram. Int. 2017, 43, 5999–6007. [Google Scholar] [CrossRef]
- Part, W.K.; Ramli, M.; Cheah, C.B. An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Constr. Build. Mater. 2015, 77, 370–395. [Google Scholar] [CrossRef]
- Samantasinghar, S.; Singh, S.P. Effect of synthesis parameters on compressive strength of fly ash-slag blended geopolymer. Constr. Build. Mater. 2018, 170, 225–234. [Google Scholar] [CrossRef]
- Liew, Y.M.; Kamarudin, H.; Al Bakri, A.M.; Binhussain, M.; Luqman, M.; Nizar, I.K.; Ruzaidi, C.M.; Heah, C.Y. Influence of solids-to-liquid and activator ratios on calcined kaolin cement powder. Phys. Procedia 2011, 22, 312–317. [Google Scholar] [CrossRef] [Green Version]
- Yahya, Z.; Abdullah, M.M.A.B.; Hussin, K.; Ismail, K.N.; Razak, R.A.; Sandu, A.V. Effect of solids-to-liquids, Na2SiO3-to-NaOH and curing temperature on the palm oil boiler ash (Si + Ca) geopolymerisation system. Materials 2015, 8, 2227–2242. [Google Scholar] [CrossRef]
- Peng, H.; Cui, C.; Cai, C.S.; Liu, Y.; Liu, Z. Microstructure and microhardness property of the interface between a metakaolin/GGGBFS-based geopolymer paste and granite aggregate. Constr. Build. Mater. 2019, 221, 263–273. [Google Scholar] [CrossRef]
- Falayi, T.; Okonta, F.N.; Ntuli, F. Desilication of fly ash and development of lightweight construction blocks from alkaline activated desilicated fly ash. Int. J. Environ. Waste Manag. 2017, 20, 233–253. [Google Scholar] [CrossRef]
- Imtiaz, L.; Rehman, S.K.U.; Ali Memon, S.; Khizar Khan, M.; Faisal Javed, M. A review of recent developments and advances in eco-friendly geopolymer concrete. Appl. Sci. 2020, 10, 7838. [Google Scholar] [CrossRef]
- Kupaei, R.H.; Alengaram, U.J.; Jumaat, M.Z. The effect of different parameters on the development of compressive strength of oil palm shell geopolymer concrete. Sci. World J. 2014, 2014, 898536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.K.; Mustakim, S.M.; Adesina, A.; Mishra, J.; Alomayri, T.S.; Assaedi, H.S.; Kaze, C.R. Fresh, strength and microstructure properties of geopolymer concrete incorporating lime and silica fume as replacement of fly ash. J. Build. Eng. 2020, 32, 101780. [Google Scholar] [CrossRef]
- Mahmoodi, O.; Siad, H.; Lachemi, M.; Dadsetan, S.; Sahmaran, M. Development of ceramic tile waste geopolymer binders based on pre-targeted chemical ratios and ambient curing. Constr. Build. Mater. 2020, 258, 120297. [Google Scholar] [CrossRef]
- Zulkifly, K.; Cheng-Yong, H.; Yun-Ming, L.; Abdullah, M.M.a.B.; Shee-Ween, O.; Khalid, M.S.B. Effect of phosphate addition on room-temperature-cured fly ash-metakaolin blend geopolymers. Constr. Build. Mater. 2021, 270, 121486. [Google Scholar] [CrossRef]
- Phummiphan, I.; Horpibulsuk, S.; Rachan, R.; Arulrajah, A.; Shen, S.-L.; Chindaprasirt, P. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material. J. Hazard. Mater. 2018, 341, 257–267. [Google Scholar] [CrossRef]
- Nath, S.K. Fly ash and zinc slag blended geopolymer: Immobilization of hazardous materials and development of paving blocks. J. Hazard. Mater. 2020, 387, 121673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, J.; Bu, Y.; Shen, Z.; Hou, X.; Huang, C. Effects of epoxy resin on the mechanical performance and thickening properties of geopolymer cured at low temperature. Mater. Des. 2016, 109, 133–145. [Google Scholar] [CrossRef]
- Lahoti, M.; Tan, K.H.; Yang, E.-H. A critical review of geopolymer properties for structural fire-resistance applications. Constr. Build. Mater. 2019, 221, 514–526. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, G.R.; Wang, J.; Chen, Q. Effect of polyacrylic resin on mechanical properties of granulated blast furnace slag based geopolymer. J. Non Cryst. Solids 2018, 481, 4–9. [Google Scholar] [CrossRef]
- Patel, Y.J.; Shah, N. Development of self-compacting geopolymer concrete as a sustainable construction material. Sustain. Environ. Res. 2018, 28, 412–421. [Google Scholar] [CrossRef]
- Huseien, G.F.; Mirza, J.; Ismail, M.; Hussin, M.W. Influence of different curing temperatures and alkali activators on properties of GGBFS geopolymer mortars containing fly ash and palm-oil fuel ash. Constr. Build. Mater. 2016, 125, 1229–1240. [Google Scholar] [CrossRef]
- Furlani, E.; Maschio, S.; Magnan, M.; Aneggi, E.; Andreatta, F.; Lekka, M.; Lanzutti, A.; Fedrizzi, L. Synthesis and characterization of geopolymers containing blends of unprocessed steel slag and metakaolin: The role of slag particle size. Ceram. Int. 2018, 44, 5226–5232. [Google Scholar] [CrossRef]
- Ali Shah, S.F.; Chen, B.; Ahmad, M.R.; Haque, M.A. Development of cleaner one-part geopolymer from lithium slag. J. Clean. Prod. 2021, 291, 125241. [Google Scholar] [CrossRef]
- Sun, S.; Lin, J.; Fang, L.; Ma, R.; Ding, Z.; Zhang, X.; Zhao, X.; Liu, Y. Formulation of sludge incineration residue based geopolymer and stabilization performance on potential toxic elements. Waste Manag. 2018, 77, 356–363. [Google Scholar] [CrossRef]
- Luhar, S.; Cheng, T.-W.; Nicolaides, D.; Luhar, I.; Panias, D.; Sakkas, K. Valorisation of glass wastes for the development of geopolymer composites—Durability, thermal and microstructural properties: A review. Constr. Build. Mater. 2019, 222, 673–687. [Google Scholar] [CrossRef]
- ASTM Standard C642-13. In Standard Test Method for Density‚ Absorption‚ and Voids in Hardened Concrete; ASTM International: West Conshohocken, PA, USA, 2013.
Chemical Composition (%) | GGBFS |
---|---|
Na2O | 0.21 |
MgO | 5.48 |
Al2O3 | 10.7 |
SiO2 | 27.2 |
P2O5 | 0.01 |
SO3 | 2.19 |
Cl | 0.02 |
K2O | 0.67 |
CaO | 49.1 |
TiO2 | 0.97 |
Cr2O3 | 0.08 |
MnO | 1.47 |
Fe2O3 | 1.22 |
NiO | 0.01 |
SrO | 0.29 |
Y2O3 | 0.02 |
ZrO2 | 0.1 |
BaO | 0.3 |
Loss of ignition | 0.23 |
Specific gravity | 2.91 |
Median particle size (µm) | 45 |
Sample ID | GGBFS (100%) | Concentration (M) | NaOH (MPa) | L/S | Temperature (℃) | Curing Age (Days) |
---|---|---|---|---|---|---|
M1 | 100 | 5 | 26.52 | 0.2 | Ambient | 7 |
M2 | 100 | 10 | 31.30 | 0.2 | Ambient | 7 |
M3 | 100 | 15 | 40.27 | 0.2 | Ambient | 7 |
M4 | 100 | 20 | 36.42 | 0.2 | Ambient | 7 |
M5 | 100 | 25 | 30.25 | 0.2 | Ambient | 7 |
M6 | 100 | 15 | 48.37 | 0.15 | Ambient | 7 |
M7 | 100 | 15 | 40.27 | 0.20 | Ambient | 7 |
M8 | 100 | 15 | 38.37 | 0.25 | Ambient | 7 |
M9 | 100 | 15 | 35.03 | 0.30 | Ambient | 7 |
M10 | 100 | 15 | 48.37 | 0.15 | Ambient | 7 |
M11 | 100 | 15 | 53.47 | 0.15 | Ambient | 14 |
M12 | 100 | 15 | 58.45 | 0.15 | Ambient | 28 |
M13 | 100 | 15 | 60.48 | 0.15 | Ambient | 56 |
M14 | 100 | 15 | 61.43 | 0.15 | Ambient | 90 |
Source of Variation | SS | df | MS | F | p-Value | F Crit |
---|---|---|---|---|---|---|
Between Groups | 0 | 1 | 0 | 0 | 1 | 18.51282 |
Within Groups | 0.9025 | 2 | 0.45125 | |||
Total | 0.9025 | 3 |
90 Days Ambient Cured Alkali Activated Sample | |
---|---|
Mass of cast (g) | 278 |
Mass of cast after 30 days soak (g) | 285 |
UCS before soak (MPa) | 61.4 |
UCS after soak (MPa) | 57.4 |
% water absorption | 2.64 |
% reduction in UCS | 6.92 |
Open porosity | 0.079 |
Volume of permeable pores (%) | 9 |
Specimen Cured Period | |||||||
---|---|---|---|---|---|---|---|
Constituents | Raw GGBFS Concentration | USEPA Maximum Allowed Concentration in Leachate | 7 Days | 14 Days | 28 Days | 56 Days | 90 Days |
(ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | |
Cu | 0.37 | 5 | 0.24 | 0.16 | 0.09 | 0.08 | 0.06 |
Fe | 0.04 | 10 | 0.03 | 0.03 | 0.021 | 0.019 | 0.01 |
Mn | 0.06 | 5 | 0.04 | 0.03 | 0.03 | 0.03 | 0.02 |
Zn | 0.01 | 0.1 | 0.01 | 0.01 | 0.01 | 0.01 | 0 |
Ni | 0.01 | 0.2 | 0.01 | 0 | 0 | 0 | 0 |
Cr | 0.09 | 5 | 0.09 | 0.08 | 0.08 | 0.07 | 0.02 |
Pb | 0.12 | 5 | 0.09 | 0.79 | 0.06 | 0.05 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sithole, T.; Tsotetsi, N.; Mashifana, T. Synthesis of Ambient Cured GGBFS Based Alkali Activated Binder Using a Sole Alkaline Activator: A Feasibility Study. Appl. Sci. 2021, 11, 5887. https://doi.org/10.3390/app11135887
Sithole T, Tsotetsi N, Mashifana T. Synthesis of Ambient Cured GGBFS Based Alkali Activated Binder Using a Sole Alkaline Activator: A Feasibility Study. Applied Sciences. 2021; 11(13):5887. https://doi.org/10.3390/app11135887
Chicago/Turabian StyleSithole, Thandiwe, Nelson Tsotetsi, and Tebogo Mashifana. 2021. "Synthesis of Ambient Cured GGBFS Based Alkali Activated Binder Using a Sole Alkaline Activator: A Feasibility Study" Applied Sciences 11, no. 13: 5887. https://doi.org/10.3390/app11135887
APA StyleSithole, T., Tsotetsi, N., & Mashifana, T. (2021). Synthesis of Ambient Cured GGBFS Based Alkali Activated Binder Using a Sole Alkaline Activator: A Feasibility Study. Applied Sciences, 11(13), 5887. https://doi.org/10.3390/app11135887