Impact of Extraction Process in Non-Compliant ‘Bravo de Esmolfe’ Apples towards the Development of Natural Antioxidant Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic Content
2.2. Phenolic Compounds Profile and Quantification
2.3. Antioxidant Activity
2.4. Principal Component Analysis
3. Materials and Methods
3.1. Chemicals
3.2. Plant Material and Preparation of Extracts
3.2.1. Plant Material
3.2.2. Preparation of BE Apple Extracts
3.3. Total Phenolic Content
3.4. Phenolic Compounds Identification by LC-ESI-QqTOF-HRMS
3.5. Phenolic Compounds Quantification by HPLC
3.6. Antioxidant Activity
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feliciano, R.P.; Antunes, C.; Ramos, A.; Serra, A.T.; Figueira, M.; Duarte, C.M.; de Carvalho, A.; Bronze, M.R. Characterization of traditional and exotic apple varieties from Portugal. Part 1—Nutritional, phytochemical and sensory evaluation. J. Funct. Foods 2010, 2, 35–45. [Google Scholar] [CrossRef]
- Serra, A.T.; Matias, A.A.; Frade, R.F.M.; Duarte, R.O.; Feliciano, R.P.; Bronze, M.R.; Figueira, M.E.; de Carvalho, A.; Duarte, C.M.M. Characterization of traditional and exotic apple varieties from Portugal. Part 2—Antioxidant and antiproliferative activities. J. Funct. Foods 2010, 2, 46–53. [Google Scholar] [CrossRef]
- Pires, T.C.; Dias, M.I.; Barros, L.; Alves, M.J.; Oliveira, M.B.P.; Santos-Buelga, C.; Ferreira, I.C. Antioxidant and antimicrobial properties of dried Portuguese apple variety (Malus domestica Borkh. cv Bravo de Esmolfe). Food Chem. 2018, 240, 701–706. [Google Scholar] [CrossRef] [Green Version]
- Serra, A.T.; Rocha, J.; Sepodes, B.; Matias, A.; Feliciano, R.P.; de Carvalho, A.; Bronze, M.R.; Duarte, C.M.; Figueira, M. Evaluation of cardiovascular protective effect of different apple varieties—Correlation of response with composition. Food Chem. 2012, 135, 2378–2386. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Commission Regulation (EC) No 85/2004 of 15 January 2004 laying down the marketing standard for apples. Off. J. Eur. Union 2004, 13, 3–18. [Google Scholar]
- Guiné, R.; Andrade, S.; Correia, A.; Jordão, A.; Lopes, A.; Ferreira, D. Evaluation of textural properties in apples of regional varieties. Int. J. Food Prop. 2011, 14, 331–338. [Google Scholar] [CrossRef]
- Reis, S.F.; Rocha, S.M.; Barros, A.S.; Delgadillo, I.; Coimbra, M.A. Establishment of the volatile profile of ‘Bravo de Esmolfe’ apple variety and identification of varietal markers. Food Chem. 2009, 113, 513–521. [Google Scholar] [CrossRef]
- Campos, D.A.; Gómez-García, R.; Vilas-Boas, A.A.; Madureira, A.R.; Pintado, M. Management of fruit industrial by-products—Only acknowledge a case study on circular economy approach. Molecules 2020, 25, 320. [Google Scholar] [CrossRef] [Green Version]
- Radenkovs, V.; Püssa, T.; Juhnevica-Radenkova, K.; Kviesis, J.; Salar, F.J.; Moreno, D.A.; Drudze, I. Wild apple (Malus spp.) by-products as a source of phenolic compounds and vitamin C for food applications. Food Biosci. 2020, 38, 100744. [Google Scholar] [CrossRef]
- Ofosu, F.K.; Daliri, E.B.-M.; Elahi, F.; Chelliah, R.; Lee, B.-H.; Oh, D.-H. New insights on the use of polyphenols as natural preservatives and their emerging safety concerns. Front. Sustain. Food Syst. 2020, 4, 223. [Google Scholar] [CrossRef]
- Li, Y.; He, D.; Li, B.; Lund, M.N.; Xing, Y.; Wang, Y.; Li, F.; Cao, X.; Liu, Y.; Chen, X.; et al. Engineering polyphenols with biological functions via polyphenol-protein interactions as additives for functional foods. Trends Food Sci. Technol. 2021, 110, 470–482. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Ferreira, J.A.; Sirohi, R.; Sarsaiya, S.; Khoshnevisan, B.; Baladi, S.; Sindhu, R.; Binod, P.; Pandey, A.; Juneja, A.; et al. A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste. Renew. Sustain. Energy Rev. 2021, 143, 110972. [Google Scholar] [CrossRef]
- Coelho, M.; Pereira, R.; Rodrigues, A.S.; Teixeira, J.A.; Pintado, M.M. Extraction of tomato by-products’ bioactive compounds using ohmic technology. Food Bioprod. Process. 2019, 117, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Kerdudo, A.; Burger, P.; Merck, F.; Dingas, A.; Rolland, Y.; Michel, T.; Fernandez, X. Development of a natural ingredient—Natural preservative: A case study. Comptes Rendus Chim. 2016, 19, 1077–1089. [Google Scholar] [CrossRef] [Green Version]
- Vilas-Boas, A.A.; Campos, D.A.; Nunes, C.; Ribeiro, S.; Nunes, J.; Oliveira, A.; Pintado, M. Polyphenol extraction by different techniques for valorisation of non-compliant portuguese sweet cherries towards a novel antioxidant extract. Sustainability 2020, 12, 5556. [Google Scholar] [CrossRef]
- Zhang, Z.; Poojary, M.M.; Choudhary, A.; Rai, D.K.; Tiwari, B.K.B.K. Comparison of selected clean and green extraction technologies for biomolecules from apple pomace. Electrophoresis 2018, 39, 1934–1945. [Google Scholar] [CrossRef] [PubMed]
- Đurović, S.; Nikolić, B.; Luković, N.; Jovanović, J.; Stefanović, A.; Šekuljica, N.; Mijin, D.; Knežević-Jugović, Z. The impact of high-power ultrasound and microwave on the phenolic acid profile and antioxidant activity of the extract from yellow soybean seeds. Ind. Crop. Prod. 2018, 122, 223–231. [Google Scholar] [CrossRef]
- Perussello, C.A.; Zhang, Z.; Marzocchella, A.; Tiwari, B.K. Valorization of apple pomace by extraction of valuable compounds. Compr. Rev. Food Sci. Food Saf. 2017, 16, 776–796. [Google Scholar] [CrossRef] [Green Version]
- Wijngaard, H.H.; Brunton, N. The optimisation of solid-liquid extraction of antioxidants from apple pomace by response surface methodology. J. Food Eng. 2010, 96, 134–140. [Google Scholar] [CrossRef]
- Grigoras, C.G.; Destandau, E.; Fougère, L.; Elfakir, C. Evaluation of apple pomace extracts as a source of bioactive compounds. Ind. Crop. Prod. 2013, 49, 794–804. [Google Scholar] [CrossRef]
- Mokrani, A.; Madani, K. Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep. Purif. Technol. 2016, 162, 68–76. [Google Scholar] [CrossRef]
- Casazza, A.A.; Pettinato, M.; Perego, P. Polyphenols from apple skins: A study on microwave-assisted extraction optimization and exhausted solid characterization. Sep. Purif. Technol. 2020, 240, 116640. [Google Scholar] [CrossRef]
- Blidi, S.; Bikaki, M.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. A Comparative Evaluation of bio-solvents for the efficient extraction of polyphenolic phytochemicals: Apple waste peels as a case study. Waste Biomass Valorization 2015, 6, 1125–1133. [Google Scholar] [CrossRef]
- Sánchez-Rabaneda, F.; Jáuregui, O.; Lamuela-Raventos, R.M.; Viladomat, F.; Bastida, J.; Codina, C. Qualitative analysis of phenolic compounds in apple pomace using liquid chromatography coupled to mass spectrometry in tandem mode. Rapid Commun. Mass Spectrom. 2004, 18, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.-L.; Yue, T.-L.; Yuan, Y.-H.; Zhang, H.-W. Optimization of microwave-assisted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis. J. Sep. Sci. 2010, 33, 3751–3758. [Google Scholar] [CrossRef]
- Pingret, D.; Fabiano-Tixier, A.-S.; Le Bourvellec, C.; Renard, C.M.G.C.; Chemat, F. Lab and pilot-scale ultrasound-assisted water extraction of polyphenols from apple pomace. J. Food Eng. 2012, 111, 73–81. [Google Scholar] [CrossRef]
- Wang, L.; Boussetta, N.; Lebovka, N.; Vorobiev, E. Effects of ultrasound treatment and concentration of ethanol on selectivity of phenolic extraction from apple pomace. Int. J. Food Sci. Technol. 2018, 53, 2104–2109. [Google Scholar] [CrossRef]
- Mendoza-Wilson, A.M.; Castro-Arredondo, S.I.; Espinosa-Plascencia, A.; Robles-Burgueño, M.D.R.; Balandrán-Quintana, R.R.; Bermúdez-Almada, M.D.C. Chemical composition and antioxidant-prooxidant potential of a polyphenolic extract and a proanthocyanidin-rich fraction of apple skin. Heliyon 2016, 2, e00073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Górnaś, P.; Dwiecki, K.; Siger, A.; Tomaszewska-Gras, J.; Michalak, M.; Polewski, K. Contribution of phenolic acids isolated from green and roasted boiled-type coffee brews to total coffee antioxidant capacity. Eur. Food Res. Technol. 2016, 242, 641–653. [Google Scholar] [CrossRef] [Green Version]
- Gu, C.; Howell, K.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS characterisation of phenolic acids and flavonoids in polyphenol-rich fruits and vegetables and their potential antioxidant activities. Antioxidants 2019, 8, 405. [Google Scholar] [CrossRef] [Green Version]
- Martini, S.; Conte-Junior, C.; Tagliazucchi, D. Phenolic compounds profile and antioxidant properties of six sweet cherry (Prunus avium) cultivars. Food Res. Int. 2017, 97, 15–26. [Google Scholar] [CrossRef]
- Alberti, A.; Zielinski, A.A.F.; Zardo, D.M.; Demiate, I.M.; Nogueira, A.; Igarashi-Mafra, L. Optimisation of the extraction of phenolic compounds from apples using response surface methodology. Food Chem. 2014, 149, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Zielinska, D.; Laparra-Llopis, J.M.; Zielinski, H.; Szawara-Nowak, D.; Giménez-Bastida, J.A. Role of apple phytochemicals, phloretin and phloridzin, in modulating processes related to intestinal inflammation. Nutrients 2019, 11, 1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleh, I.; Vinatoru, M.; Mason, T.J.; Abdel-Azim, N.; Aboutabl, E.; Hammouda, F. A possible general mechanism for ultrasound-assisted extraction (UAE) suggested from the results of UAE of chlorogenic acid from Cynara scolymus L. (artichoke) leaves. Ultrason. Sonochem. 2016, 31, 330–336. [Google Scholar] [CrossRef]
- Pinelo, M.; Zornoza, B.; Meyer, A.S. Selective release of phenols from apple skin: Mass transfer kinetics during solvent and enzyme-assisted extraction. Sep. Purif. Technol. 2008, 63, 620–627. [Google Scholar] [CrossRef]
- Tiwari, U.; Cummins, E. Factors influencing levels of phytochemicals in selected fruit and vegetables during pre- and post-harvest food processing operations. Food Res. Int. 2013, 50, 497–506. [Google Scholar] [CrossRef]
- Kjellenberg, L.; Johansson, E.; Gustavsson, K.-E.; Olsson, M.E. Effects of harvesting date and storage on the amounts of pol-yacetylenes in carrots, Daucus carota. J. Agric. Food Chem. 2010, 58, 11703–11708. [Google Scholar] [CrossRef] [PubMed]
- Schmitz-Eiberger, M.; Matthes, A. Effect of harvest maturity, duration of storage and shelf life of apples on the allergen Mal d 1, polyphenoloxidase activity and polyphenol content. Food Chem. 2011, 127, 1459–1464. [Google Scholar] [CrossRef]
- Górnaś, P.; Mišina, I.; Olšteine, A.; Krasnova, I.; Pugajeva, I.; Lācis, G.; Siger, A.; Michalak, M.; Soliven, A.; Seglina, D. Phenolic compounds in different fruit parts of crab apple: Dihydrochalcones as promising quality markers of industrial apple pomace by-products. Ind. Crop. Prod. 2015, 74, 607–612. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, P.; Cheng, L. Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in ‘Honeycrisp’ apple flesh. Food Chem. 2010, 123, 1013–1018. [Google Scholar] [CrossRef]
- Oh, M.-M.; Carey, E.; Rajashekar, C. Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiol. Biochem. 2009, 47, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Berni, R.; Cantini, C.; Romi, M.; Hausman, J.-F.; Guerriero, G.; Cai, G. Agrobiotechnology goes wild: Ancient local varieties as sources of bioactives. Int. J. Mol. Sci. 2018, 19, 2248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carocho, M.; Morales, P.; Ferreira, I.C. Antioxidants: Reviewing the chemistry, food applications, legislation and role as preservatives. Trends Food Sci. Technol. 2018, 71, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Dey, T.B.; Chakraborty, S.; Jain, K.K.; Sharma, A.; Kuhad, R.C. Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends Food Sci. Technol. 2016, 53, 60–74. [Google Scholar] [CrossRef]
- Faustino, A.M.; Veiga, M.; Sousa, P.; Costa, E.M.; Silva, S.; Pintado, M. Agro-food byproducts as a new source of natural food additives. Molecules 2019, 24, 1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves-Silva, J.M.; dos Santos, S.M.D.; Pintado, M.M.; Pérez-Álvarez, J.A.; Fernández-López, J.; Viuda-Martos, M. Chemical composition and in vitro antimicrobial, antifungal and antioxidant properties of essential oils obtained from some herbs widely used in Portugal. Food Control. 2013, 32, 371–378. [Google Scholar] [CrossRef]
- Kelebek, H.; Selli, S. Evaluation of chemical constituents and antioxidant activity of sweet cherry (Prunus avium L.) cultivars. Int. J. Food Sci. Technol. 2011, 46, 2530–2537. [Google Scholar] [CrossRef]
- Kulczyński, B.; Gramza-Michałowska, A.; Królczyk, J.B. Optimization of extraction conditions for the antioxidant potential of different pumpkin varieties (Cucurbita maxima). Sustainability 2020, 12, 1305. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, T.B.; Oliveira, A.L.; Costa, C.; Nunes, J.; Vicente, A.A.; Pintado, M. Total and sustainable valorisation of olive pomace using a fractionation approach. Appl. Sci. 2020, 10, 6785. [Google Scholar] [CrossRef]
- Gómez-García, R.; Campos, D.A.; Oliveira, A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. A chemical valorisation of melon peels towards functional food ingredients: Bioactives profile and antioxidant properties. Food Chem. 2021, 335, 127579. [Google Scholar] [CrossRef]
- Dias, C.; Fonseca, A.; Amaro, A.L.; Vilas-Boas, A.A.; Oliveira, A.; Santos, S.A.O.; Silvestre, A.J.D.; Rocha, S.M.; Isidoro, N.; Pintado, M. Natural-based antioxidant extracts as potential mitigators of fruit browning. Antioxidants 2020, 9, 715. [Google Scholar] [CrossRef]
- Ribeiro, T.B.; Oliveira, A.; Campos, D.; Nunes, J.; Vicente, A.A.; Pintado, M. Simulated digestion of an olive pomace water-soluble ingredient: Relationship between the bioaccessibility of compounds and their potential health benefits. Food Funct. 2020, 11, 2238–2254. [Google Scholar] [CrossRef]
- Vilas-Boas, A.; Oliveira, A.; Jesus, D.; Rodrigues, C.; Figueira, C.; Gomes, A.; Pintado, M.M. Chlorogenic acids composition and the impact of in vitro gastrointestinal digestion on espresso coffee from single-dose capsule. Food Res. Int. 2020, 134, 109223. [Google Scholar] [CrossRef] [PubMed]
- Soquetta, M.B.; Terra, L.D.M.; Bastos, C.P. Green technologies for the extraction of bioactive compounds in fruits and vegetables. CyTA J. Food 2018, 16, 400–412. [Google Scholar] [CrossRef]
- Leadbeater, N. 9.10 Organic synthesis using microwave heating. In Comprehensive Organic Synthesis II, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 9, pp. 234–286. [Google Scholar]
- Alexandre, E.; Silva, S.; Santos, S.A.; Silvestre, A.J.; Duarte, M.F.; Saraiva, J.A.; Pintado, M. Antimicrobial activity of pomegranate peel extracts performed by high pressure and enzymatic assisted extraction. Food Res. Int. 2019, 115, 167–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
BE Apple Extracts | TPC (mg GAE/g DE) |
---|---|
CE | 2.95 ± 0.31 b |
CET | 4.64 ± 0.64 a |
MAE | 4.44 ± 0.32 a |
UAE | 2.82 ± 0.21 b |
Proposed Compound | Rt (Min) | m/z [M-H]− | MS/MS Fragments (m/z, % Base Peak Intensity) | Bravo de Esmolfe Apple Extracts | |||
---|---|---|---|---|---|---|---|
CET | CE | MAE | UAE | ||||
Hydroxycinnamic acids | |||||||
5-Caffeoylquinic acid trans | 8.7 | 353.1 | 191(100) | + | + | + | + |
4-Caffeoylquinic acid trans | 8.9 | 353.1 | 191(82), 179(80), 173(97.6), 135(21) | + | + | + | + |
5-Caffeoylquinic acid cis | 9.6 | 353.1 | 191(100) | + | - | + | - |
p-Coumaric acid | 8.9 | 163.0 | 119(100) | + | - | + | + |
3-Coumaroylquinic acid trans | 8.5 | 337.1 | 163(100), 191(20), 119(13) | + | - | + | - |
4-Coumaroylquinic acid | 9.6 | 337.1 | 173(100), 163(21), 191(14), 119(7) | + | - | + | - |
5-Coumaroylquinic acid | 10.8 | 337.1 | 191(100), 173(3), 163(24),119(4) | + | - | + | - |
Caffeoyl alcohol 3/4-O-hexoside | 8.3 | 327.1 | 165(100) | + | + | + | + |
Feruloyl hexose | 10.2 | 355.1 | 295(100), 235(74), 193(57), 265(33),175(27) | + | + | + | + |
Hydroxybenzoic acids | |||||||
Protocatechuic acid glycoside | 6.8 | 315.1 | 315(100), 109(5), 153(14) | + | + | + | + |
Flavanols | |||||||
(+)-Catechin | 8.7 | 289.1 | 289(100), 245(41) | + | - | + | - |
(−)-epicatechin | 9.7 | 289.1 | 289(100), 245(42) | + | + | + | + |
Epicatechin derivative | 12.2 | 289.1 | 245(100), 203(74) | + | - | + | - |
Epicatechin-3-gallate | 12.8 | 441.1 | 395(100), 263(81), 441(6) | + | + | + | + |
Epigallocatechin gallate | 8.4 | 457.2 | 457(100), 277(8.5), 89(4) | + | + | + | + |
Procyanidin dimer B type | 8 | 577.1 | 289(100), 407(63), 425(50) | + | - | + | - |
Procyanidin B2 | 9.2 | 577.1 | 289(98), 407(76), 425(65) | + | - | + | - |
Procyanidin C1 | 9.8 | 865.2 | 287(100), 289(83), 407(54), 425(63), 577(59), 713(33), 695(27) | + | - | + | - |
Flavonols | |||||||
Quercetin-3-O-rutinoside | 11.5 | 609.1 | 609(100), 300(19), 301(16) | + | - | + | - |
Quercetin-3-O-glucoside | 11.8 | 463.1 | 463(100), 300(78), 301(46) | + | - | + | + |
Quercetin-3-O-hexoside | 12 | 463.1 | 463(100), 300(78), 301(46) | + | - | + | - |
Dihydrochalcones | |||||||
Phloretin | 13.1 | 567.2 | 273(100), 167(5) | + | - | + | - |
Phloridzin | 14.4 | 435.1 | 273(100), 249(12), 167(11) | + | - | + | - |
Phenolic Compound | Bravo de Esmolfe Apple Extracts | ||||
---|---|---|---|---|---|
CE | CET | MAE | UAE | ||
Hydroxycinnamic Acids | |||||
3 | Chlorogenic Acid | 0.11 ± 0.01 c | 0.34 ± 0.05 b | 0.48 ± 0.07 a | 0.12 ± 0.01 c |
4 | Cryptochlorogenic Acid | 0.05 ± 0.00 b | 0.08 ± 0.02 b | 0.12 ± 0.01 a | 0.05 ± 0.01 b |
2 | p-Coumaroylquinic acid | 0.05 ± 0.01 c | 0.19 ± 0.01 a | 0.18 ± 0.01 a | 0.07 ± 0.00 b |
1 | p-Coumaric acid | - | 0.10 ± 0.01 a | 0.09 ± 0.02 a | 0.04 ± 0.02 a |
Flavanols | |||||
5 | (+)-Catechin | - | 0.19 ± 0.02 a | 0.18 ± 0.03 a | - |
6 | (−)-epicatechin | 0.11 ± 0.01 a | 0.34 ± 0.02 a | 0.30 ± 0.02 a | 0.10 ± 0.01 a |
7 | (−)-epicatechin-3-gallate | 0.05 ± 0.02 a | 0.10 ± 0.01 a | 0.10 ± 0.02 a | 0.06 ± 0.02 a |
8 | Procyanidin B2 | - | 0.09 ± 0.01 b | 0.11 ± 0.01 a | - |
9 | Procyanidin C1 | - | 0.05 ± 0.02 b | 0.12 ± 0.01 a | - |
Flavonols | |||||
10 | Quercetin-3-rutinoside | - | 0.09 ± 0.01 a | 0.10 ± 0.01 a | - |
Dihydrochalcones | |||||
11 | Phloretin | - | 0.11 ± 0.01 a | 0.07 ± 0.00 b | - |
12 | Phloridzin | - | 0.21 ± 0.03 a | 0.13 ± 0.01 b | - |
BE Apple Extracts | |
---|---|
Number | Variable Designation |
1 | Total Phenolic Content |
2 | ABTS method |
3 | DPPH method |
4 | ORAC method |
5 | Chlorogenic acid |
6 | Cryptochlorogenic acid |
7 | p-Coumaroylquinic acid |
8 | p-Coumaric acid |
9 | (+)-Catechin |
10 | (−)-epicatechin |
11 | Epicatechin-3-gallate |
12 | Procyanidin B2 |
13 | Procyanidin C1 |
14 | Quercetin-3-rutinoside |
15 | Phloretin |
16 | Phloridzin |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilas-Boas, A.A.; Oliveira, A.; Ribeiro, T.B.; Ribeiro, S.; Nunes, C.; Gómez-García, R.; Nunes, J.; Pintado, M. Impact of Extraction Process in Non-Compliant ‘Bravo de Esmolfe’ Apples towards the Development of Natural Antioxidant Extracts. Appl. Sci. 2021, 11, 5916. https://doi.org/10.3390/app11135916
Vilas-Boas AA, Oliveira A, Ribeiro TB, Ribeiro S, Nunes C, Gómez-García R, Nunes J, Pintado M. Impact of Extraction Process in Non-Compliant ‘Bravo de Esmolfe’ Apples towards the Development of Natural Antioxidant Extracts. Applied Sciences. 2021; 11(13):5916. https://doi.org/10.3390/app11135916
Chicago/Turabian StyleVilas-Boas, Ana A., Ana Oliveira, Tânia B. Ribeiro, Sónia Ribeiro, Catarina Nunes, Ricardo Gómez-García, João Nunes, and Manuela Pintado. 2021. "Impact of Extraction Process in Non-Compliant ‘Bravo de Esmolfe’ Apples towards the Development of Natural Antioxidant Extracts" Applied Sciences 11, no. 13: 5916. https://doi.org/10.3390/app11135916
APA StyleVilas-Boas, A. A., Oliveira, A., Ribeiro, T. B., Ribeiro, S., Nunes, C., Gómez-García, R., Nunes, J., & Pintado, M. (2021). Impact of Extraction Process in Non-Compliant ‘Bravo de Esmolfe’ Apples towards the Development of Natural Antioxidant Extracts. Applied Sciences, 11(13), 5916. https://doi.org/10.3390/app11135916