Evaluation of Visual and Nonvisual Levels of Daylight from Spectral Power Distributions Considering Orientation and Seasonality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spectral Measurements
2.2. Theoretical Considerations
3. Results and Discussion
3.1. Sky Characteristics and Photopic Descriptions
3.2. Circadian Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ISO 15469: 2004. Spatial Distribution of Daylight—CIE Standard General Sky; CIE Central Bureau: Vienna, Austria, 2003. [Google Scholar]
- Darula, S.; Kittler, R. A methodology for designing and calibrating an artificial sky to simulate ISO/CIE sky types with an artificial sun. Leukos 2015, 11, 93–105. [Google Scholar] [CrossRef]
- Kim, C.; Kim, K. Development of sky luminance and daylight illuminance prediction methods for lighting energy saving in office buildings. Energies 2019, 12, 592. [Google Scholar] [CrossRef] [Green Version]
- Perez, R.; Ineichen, P.; Seals, R.; Michalsky, J.; Stewart, R. Modeling daylight availability and irradiance components from direct and global irradiance. Sol. Energy 1990, 44, 271–289. [Google Scholar] [CrossRef] [Green Version]
- Li, D.H.; Lou, S. Review of solar irradiance and daylight illuminance modeling and sky classification. Renew. Energy 2018, 126, 445–453. [Google Scholar] [CrossRef]
- BS EN 12464-1:2011. Light and Lighting—Lighting of Work Places—Part 1: Indoor Work Places; BSI Standards Publication: London, UK, 2011. [Google Scholar]
- UNE EN 12464-2:2016. Light and Lighting—Lighting of Work Places—Part 2: Outdoor Work Places; BSI Standards Publication: London, UK, 2011. [Google Scholar]
- Wild, C.P. Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1847–1850. [Google Scholar] [CrossRef] [Green Version]
- Lucas, R.J.; Peirson, S.N.; Berson, D.M.; Brown, T.M.; Cooper, H.M.; Czeisler, C.A.; Figueiro, M.G.; Gamlin, P.D.; Lockley, S.W.; O’Hagan, J.B.; et al. Measuring and using light in the melanopsin age. Trends Neurosci. 2014, 37, 1–9. [Google Scholar] [CrossRef]
- CIE S 026/E:2018. CIE System for Metrology of Optical Radiation for ipRGC-Influenced Responses to Light; CIE Central Bureau: Vienna, Austria, 2018. [Google Scholar]
- Khademagha, P.; Aries, M.; Rosemann, A.; van Loenen, E.J. Implementing non-image-forming effects of light in the built environment: A review on what we need. Build. Environ. 2016, 108, 263–272. [Google Scholar] [CrossRef] [Green Version]
- CIE. Position Statement on Non-Visual Effects of Light—Recommending Proper Light at the Proper Time, 2nd ed.; CIE Central Bureau: Vienna, Austria, 2019. [Google Scholar]
- International WELL Building Institute (IWBI) WELL Building Standard. LIGHT. WELL v2. Q2 2021. Available online: https://standard.wellcertified.com/well (accessed on 12 May 2021).
- Brown, T.; Brainard, G.; Cajochen, C.; Czeisler, C.; Hanifin, J.; Lockley, S.; Lucas, R.; Munch, M.; O’Hagan, J.; Peirson, S. Recommendations for healthy daytime, evening, and night-time indoor light exposure. Preprints 2020. [Google Scholar] [CrossRef]
- Schlangen, L.J.; Price, L.L. The Lighting environment, its metrology, and non-visual responses. Front. Neurol. 2021, 12, 235. [Google Scholar] [CrossRef]
- Brainard, G.C.; Hanifin, J.P.; Greeson, J.M.; Byrne, B.; Glickman, G.; Gerner, E.; Rollag, M.D. Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. J. Neurosci. 2001, 21, 6405–6412. [Google Scholar] [CrossRef] [Green Version]
- Bellia, L.; Błaszczak, U.; Fragliasso, F.; Gryko, L. Matching CIE illuminants to measured spectral power distributions: A method to evaluate non-visual potential of daylight in two European cities. Sol. Energy 2020, 208, 830–858. [Google Scholar] [CrossRef]
- Bellia, L.; Fragliasso, F. Good places to live and sleep well: A literature review about the role of architecture in determining non-visual effects of light. Int. J. Environ. Res. Public Health 2021, 18, 1002. [Google Scholar] [CrossRef]
- Wyszecki, G.; Stiles, W.S. Color Science; Wiley: New York, NY, USA, 1982; Volume 8. [Google Scholar]
- Sánchez-Cano, A.; Aporta, J. Optimization of lighting projects including photopic and circadian criteria: A simplified action protocol. Appl. Sci. 2020, 10, 8068. [Google Scholar] [CrossRef]
- Gall, D.; Bieske, K. Definition and Measurement of Circadian Radiometric Quantities; Ilmenau University of Technology: Ilmenau, Germany, 2004. [Google Scholar]
- Diakite, A.K.; Knoop, M. Data-driven spectral sky models: A review. J. Int. Colour Assoc. 2019, 23, 55–61. [Google Scholar]
- Knoop, M.; Weber, N.; Diakite, A. Approach to analyse seasonal and geographical variations in daylight illuminants. In Proceedings of the CIE x046: 2019 Proceedings of the 29th CIE Session, Washington DC, USA, 14–22 June 2019. [Google Scholar]
- Hernández-Andrés, J.; Romero, J.; Nieves, J.L.; Lee, R.L. Color and spectral analysis of daylight in southern Europe. JOSA A 2001, 18, 1325–1335. [Google Scholar] [CrossRef] [PubMed]
- Spitschan, M.; Aguirre, G.K.; Brainard, D.H.; Sweeney, A.M. Variation of outdoor illumination as a function of solar elevation and light pollution. Sci. Rep. 2016, 6, 1–14. [Google Scholar]
- Peyvandi, S.; Hernández-Andrés, J.; Olmo, F.J.; Nieves, J.L.; Romero, J. Colorimetric analysis of outdoor illumination across varieties of atmospheric conditions. JOSA A 2016, 33, 1049–1059. [Google Scholar] [CrossRef] [Green Version]
- Condit, H.R.; Grum, F. Spectral energy distribution of daylight. Josa 1964, 54, 937–944. [Google Scholar] [CrossRef]
- Li, D.H.; Chau, T.C.; Wan, K.K. A review of the CIE general sky classification approaches. Renew. Sustain. Energy Rev. 2014, 31, 563–574. [Google Scholar] [CrossRef]
- Rea, M.S.; Figueiro, M.G.; Bierman, A.; Hamner, R. Modelling the spectral sensitivity of the human circadian system. Light. Res. Technol. 2012, 44, 386–396. [Google Scholar] [CrossRef]
- Cai, W.; Yue, J.; Dai, Q.; Hao, L.; Lin, Y.; Shi, W.; Huang, Y.; Wei, M. The impact of room surface reflectance on corneal illuminance and rule-of-thumb equations for circadian lighting design. Build. Environ. 2018, 141, 288–297. [Google Scholar] [CrossRef]
- Rea, M.S.; Figueiro, M.G. Light as a circadian stimulus for architectural lighting. Light. Res. Technol. 2018, 50, 497–510. [Google Scholar] [CrossRef]
- Figueiro, M.G.; Kalsher, M.; Steverson, B.C.; Heerwagen, J.; Kampschroer, K.; Rea, M.S. Circadian-effective light and its impact on alertness in office workers. Light. Res. Technol. 2019, 51, 171–183. [Google Scholar] [CrossRef]
- Figueiro, M.G.; Nagare, R.; Price, L. Non-visual effects of light: How to use light to promote circadian entrainment and elicit alertness. Light. Res. Technol. 2018, 50, 38–62. [Google Scholar] [CrossRef] [PubMed]
- Figueiro, M.G.; Steverson, B.; Heerwagen, J.; Kampschroer, K.; Hunter, C.M.; Gonzales, K.; Plitnick, B.; Rea, M.S. The impact of daytime light exposures on sleep and mood in office workers. Sleep Health 2017, 3, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Acosta, I.; Leslie, R.P.; Figueiro, M.G. Analysis of circadian stimulus allowed by daylighting in hospital rooms. Light. Res. Technol. 2017, 49, 49–61. [Google Scholar] [CrossRef]
- Dai, Q.; Huang, Y.; Hao, L.; Lin, Y.; Chen, K. Spatial and spectral illumination design for energy-efficient circadian lighting. Build. Environ. 2018, 146, 216–225. [Google Scholar] [CrossRef]
- Li, M.; Wu, P.; Ding, J.; Yao, Q.; Ju, J. The circadian effect versus mesopic vision effect in road lighting applications. Appl. Sci. 2020, 10, 6975. [Google Scholar] [CrossRef]
- Sánchez-Cano, A.; Pérez, O.L.; Aporta, J. Proposal to calculate the circadian component in lighting projects. Opt. Pura. Apl. 2019, 52, 1–11. [Google Scholar] [CrossRef]
- Yao, Q.; Cai, W.; Li, M.; Hu, Z.; Xue, P.; Dai, Q. Efficient circadian daylighting: A proposed equation, experimental validation, and the consequent importance of room surface reflectance. Energy Build. 2020, 210, 109784. [Google Scholar] [CrossRef]
- Parsaee, M.; Demers, C.M.; Lalonde, J.; Potvin, A.; Inanici, M.; Hébert, M. Human-centric lighting performance of shading panels in architecture: A benchmarking study with lab scale physical models under real skies. Sol. Energy 2020, 204, 354–368. [Google Scholar] [CrossRef]
- O’Mahoney, P.; Khazova, M.; Higlett, M.; Lister, T.; Ibbotson, S.; Eadie, E. Use of illuminance as a guide to effective light delivery during daylight photodynamic therapy in the UK. Br. J. Dermatol. 2017, 176, 1607–1616. [Google Scholar] [CrossRef] [Green Version]
- O’Mahoney, P.; Khazova, M.; Eadie, E.; Ibbotson, S. Measuring daylight: A review of dosimetry in daylight photodynamic therapy. Pharmaceuticals 2019, 12, 143. [Google Scholar] [CrossRef] [Green Version]
- Münch, M.; Wirz-Justice, A.; Brown, S.A.; Kantermann, T.; Martiny, K.; Stefani, O.; Vetter, C.; Wright, K.P., Jr.; Wulff, K.; Skene, D.J. The role of daylight for humans: Gaps in current knowledge. Clocks Sleep 2020, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Troilo, D.; Smith, E.L.; Nickla, D.L.; Ashby, R.; Tkatchenko, A.V.; Ostrin, L.A.; Gawne, T.J.; Pardue, M.T.; Summers, J.A.; Kee, C. IMI–Report on experimental models of emmetropization and myopia. Investig. Ophthalmol. Vis. Sci. 2019, 60, M31–M88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
NORTH | EAST | SOUTH | WEST | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
15° | 30° | 45° | 15° | 30° | 45° | 15° | 30° | 45° | 15° | 30° | 45° | |
12 December 2018 | ||||||||||||
Ee (µW/cm2) | 3197 | 3047 | 2839 | 19,081 | 19,436 | 17,576 | 35,271 | 36,212 | 35,274 | 2894 | 2899 | 2918 |
L (cd/m2) | 444 | 3574 | 2240 | 4787 | 4059 | 2628 | 18,590 | 12,960 | 15,220 | 3319 | 2592 | 1643 |
21 January 2019 | ||||||||||||
Ee (µW/cm2) | 3340 | 3134 | 2830 | 25,475 | 25,922 | 25,277 | 29,394 | 29,973 | 27,607 | 2987 | 2943 | 2724 |
L (cd/m2) | 5017 | 2596 | 1703 | 4983 | 3708 | 2475 | 9360 | 6400 | 3922 | 3851 | 2898 | 1423 |
21 February 2019 | ||||||||||||
Ee (µW/cm2) | 3931 | 3896 | 4077 | 28,019 | 30,388 | 30,585 | 28,827 | 31,191 | 31,232 | 4348 | 4100 | 4465 |
L (cd/m2) | 3045 | 2064 | 1820 | 11,020 | 8730 | 5019 | 8430 | 5521 | 4837 | 2600 | 1696 | 1401 |
18 March 2019 | ||||||||||||
Ee (µW/cm2) | 3191 | 2878 | 2588 | 38,413 | 41,519 | 39,197 | 24,936 | 29,386 | 32,138 | 3802 | 3490 | 3139 |
L (cd/m2) | 2200 | 1322 | 1016 | 4055 | 2706 | 2368 | 3955 | 2500 | 2176 | 2800 | 1390 | 1062 |
12 April 2019 | ||||||||||||
Ee (µW/cm2) | 4885 | 5283 | 8752 | 37,091 | 38,974 | 37,395 | 11,822 | 15,363 | 18,544 | 4132 | 5152 | 4420 |
L (cd/m2) | 3333 | 3290 | 2942 | 17,990 | 19,330 | 18,840 | 5930 | 6211 | 18,840 | 3450 | 3317 | 1076 |
14 May 2019 | ||||||||||||
Ee (µW/cm2) | 4780 | 9791 | 15,429 | 40,761 | 44,519 | 44,569 | 7907 | 14,418 | 20,406 | 3748 | 3488 | 3128 |
L (cd/m2) | 3419 | 1791 | 1224 | 7720 | 5098 | 5996 | 4020 | 2287 | 1775 | 2384 | 1919 | 1138 |
17 June 2019 | ||||||||||||
Ee (µW/cm2) | 8067 | 13,439 | 17,755 | 39,660 | 43,915 | 45,014 | 4798 | 18,450 | 23,816 | 4131 | 3792 | 3659 |
L (cd/m2) | 3883 | 2339 | 1742 | 10,310 | 8200 | 9410 | 4430 | 2567 | 2046 | 4179 | 2300 | 1399 |
12 July 2019 | ||||||||||||
Ee (µW/cm2) | 4897 | 11,880 | 18,786 | 34,359 | 39,698 | 42,941 | 18,469 | 25,596 | 31,130 | 4666 | 4240 | 4260 |
L (cd/m2) | 20,000 | 12,340 | 8820 | 41,100 | 29,450 | 29,150 | 29,090 | 16,230 | 13,120 | 19,420 | 11,030 | 7160 |
13 August 2019 | ||||||||||||
Ee (µW/cm2) | 7624 | 11,232 | 17,794 | 42,764 | 46,853 | 47,244 | 13,897 | 20,120 | 24,896 | 6794 | 7255 | 8033 |
L (cd/m2) | 7293 | 7891 | 6885 | 14,830 | 7891 | 6885 | 10,040 | 8193 | 5290 | 2598 | 4290 | 6031 |
16 September 2019 | ||||||||||||
Ee (µW/cm2) | 5060 | 5512 | 6596 | 33,242 | 34,991 | 34,059 | 16,551 | 20,065 | 22,074 | 5460 | 5851 | 6522 |
L (cd/m2) | 3641 | 2839 | 3239 | 16,270 | 18,250 | 23,760 | 4598 | 6454 | 9320 | 3939 | 4461 | 5169 |
15 October2019 | ||||||||||||
Ee (µW/cm2) | 3092 | 2923 | 2734 | 35,241 | 35,516 | 33,065 | 21,147 | 22,845 | 24,149 | 3201 | 2989 | 2714 |
L (cd/m2) | 2802 | 1461 | 908 | 6716 | 5142 | 2509 | 4388 | 2507 | 1625 | 3594 | 1762 | 1022 |
13 November 2019 | ||||||||||||
Ee (µW/cm2) | 3877 | 4593 | 4224 | 44,067 | 46,117 | 45,410 | 28,262 | 26,410 | 21,544 | 4503 | 4915 | 4786 |
L (cd/m2) | 2253 | 1636 | 1050 | 6147 | 2931 | 1823 | 9380 | 5776 | 4424 | 3405 | 1758 | 1167 |
NORTH | SOUTH | EAST | WEST | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAF | 15° | 30° | 45° | 15° | 30° | 45° | 15° | 30° | 45° | 15° | 30° | 45° |
DEC | 0.900 | 0.966 | 1.034 | 0.759 | 0.760 | 0.760 | 0.763 | 0.770 | 0.781 | 0.923 | 0.988 | 1.052 |
JAN | 0.923 | 0.998 | 1.079 | 0.777 | 0.781 | 0.788 | 0.780 | 0.785 | 0.789 | 0.928 | 0.996 | 1.089 |
FEB | 0.884 | 0.953 | 1.002 | 0.788 | 0.793 | 0.797 | 0.788 | 0.792 | 0.796 | 0.885 | 0.924 | 0.972 |
MAR | 0.964 | 1.058 | 1.156 | 0.821 | 0.821 | 0.819 | 0.811 | 0.813 | 0.816 | 0.901 | 0.983 | 1.081 |
APR | 0.897 | 0.941 | 0.892 | 0.834 | 0.828 | 0.827 | 0.789 | 0.793 | 0.770 | 0.867 | 0.876 | 0.980 |
MAY | 0.923 | 0.877 | 0.850 | 0.879 | 0.852 | 0.839 | 0.807 | 0.808 | 0.811 | 0.879 | 0.969 | 1.069 |
JUN | 0.865 | 0.848 | 0.841 | 0.958 | 0.838 | 0.831 | 0.805 | 0.808 | 0.809 | 0.852 | 0.947 | 1.026 |
JUL | 0.911 | 0.868 | 0.845 | 0.832 | 0.830 | 0.827 | 0.815 | 0.817 | 0.818 | 0.856 | 0.933 | 1.009 |
AUG | 0.837 | 0.851 | 0.838 | 0.831 | 0.829 | 0.827 | 0.798 | 0.802 | 0.805 | 0.829 | 0.864 | 0.897 |
SEP | 0.845 | 0.881 | 0.894 | 0.786 | 0.789 | 0.792 | 0.772 | 0.775 | 0.780 | 0.790 | 0.829 | 0.861 |
OCT | 0.966 | 1.033 | 1.105 | 0.795 | 0.799 | 0.801 | 0.781 | 0.783 | 0.788 | 0.914 | 0.990 | 1.085 |
NOV | 0.952 | 0.986 | 0.993 | 0.801 | 0.805 | 0.810 | 0.819 | 0.825 | 0.830 | 0.912 | 0.902 | 0.904 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezpeleta, S.; Orduna-Hospital, E.; Aporta, J.; Luesma, M.J.; Pinilla, I.; Sánchez-Cano, A. Evaluation of Visual and Nonvisual Levels of Daylight from Spectral Power Distributions Considering Orientation and Seasonality. Appl. Sci. 2021, 11, 5996. https://doi.org/10.3390/app11135996
Ezpeleta S, Orduna-Hospital E, Aporta J, Luesma MJ, Pinilla I, Sánchez-Cano A. Evaluation of Visual and Nonvisual Levels of Daylight from Spectral Power Distributions Considering Orientation and Seasonality. Applied Sciences. 2021; 11(13):5996. https://doi.org/10.3390/app11135996
Chicago/Turabian StyleEzpeleta, Silvia, Elvira Orduna-Hospital, Justiniano Aporta, María José Luesma, Isabel Pinilla, and Ana Sánchez-Cano. 2021. "Evaluation of Visual and Nonvisual Levels of Daylight from Spectral Power Distributions Considering Orientation and Seasonality" Applied Sciences 11, no. 13: 5996. https://doi.org/10.3390/app11135996
APA StyleEzpeleta, S., Orduna-Hospital, E., Aporta, J., Luesma, M. J., Pinilla, I., & Sánchez-Cano, A. (2021). Evaluation of Visual and Nonvisual Levels of Daylight from Spectral Power Distributions Considering Orientation and Seasonality. Applied Sciences, 11(13), 5996. https://doi.org/10.3390/app11135996