Influence of Plasma Activated Water Generated in a Gliding Arc Discharge Reactor on Germination of Beetroot and Carrot Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Treated Seeds
2.2. Plasma Activated Water
2.3. Germination Rate
2.4. Fungi on the Seed Surface
2.5. Surface Imaging Using an Optical Microscope and SEM
2.6. Statistical Analysis
3. Results and Discussion
3.1. Germination Rate
3.2. Sprout Length
3.3. Statistical Analysis
3.4. Fungi on the Seed Surface
3.5. Surface Imaging Using an Optical Microscope and SEM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Barzman, M.; Bàrberi, P.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.; Kudsk, P.; et al. Eight Principles of Integrated Pest Management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar] [CrossRef]
- Jamiolkowska, A.; Hetman, B.; Skwarylo-Bendarz, B.; Kopacki, M. Integrowana ochrona roślin w Polsce i Unii Europejskiej oraz prawne podstawy jej funkcjonowania. Praca przeglądowa. Ann. Univ. Mariae Curie-Skłodowska Sect. E Agric. 2017, 72. [Google Scholar] [CrossRef]
- Mazur-Wierzbicka, E. The Application of Corporate Social Responsibility in European Agriculture. Misc. Geogr. 2015, 19, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Gamliel, A. Application Aspects of Integrated Pest Management. J. Plant Pathol. 2010, 92, S23–S26. [Google Scholar]
- Brühl, C.A.; Zaller, J.G. Biodiversity Decline as a Consequence of an Inappropriate Environmental Risk Assessment of Pesticides. Front. Environ. Sci. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Valiuškaitė, A.; Uselis, N.; Kviklys, D.; Lanauskas, J.; Rasiukevičiūtė, N. The Effect of Sustainable Plant Protection and Apple Tree Management on Fruit Quality and Yield. Zemdirb. Agric. 2017, 104. [Google Scholar] [CrossRef] [Green Version]
- Popp, J.; Pető, K.; Nagy, J. Pesticide Productivity and Food Security. A Review. Agron. Sustain. Dev. 2013, 33, 243–255. [Google Scholar] [CrossRef]
- Laroussi, M. Low Temperature Plasma-Based Sterilization: Overview and State-of-the-Art. Plasma Process. Polym. 2005, 2, 391–400. [Google Scholar] [CrossRef]
- Von Woedtke, T.; Reuter, S.; Masur, K.; Weltmann, K.-D. Plasmas for Medicine. Phys. Rep. 2013, 530, 291–320. [Google Scholar] [CrossRef]
- Lu, X.; Naidis, G.V.; Laroussi, M.; Reuter, S.; Graves, D.B.; Ostrikov, K. Reactive Species in Non-Equilibrium Atmospheric-Pressure Plasmas: Generation, Transport, and Biological Effects. Phys. Rep. 2016, 630, 1–84. [Google Scholar] [CrossRef] [Green Version]
- Moisan, M.; Barbeau, J.; Crevier, M.-C.; Pelletier, J.; Philip, N.; Saoudi, B. Plasma sterilization. Methods and mechanisms. Pure Appl. Chem. 2002, 74, 349–358. [Google Scholar] [CrossRef]
- Kyzek, S.; Holubová, L.; Medvecká, V.; Zahoranová, A.; Ševčovičová, A.; Gálová, E. Genotoxic Effect of Low Temperature Plasma Treatment on Plant Seeds. Toxicol. Lett. 2017, 280, S119. [Google Scholar] [CrossRef]
- Rodriguez, C.; Wandell, R.J.; Zhang, Z.; Neurohr, J.M.; Tang, Y.; Rhodes, R.; Kinsey, S.T.; Locke, B.R. Escherichia Coli Survival in Plasma-Treated Water and in a Gas–Liquid Plasma Reactor. Plasma Process. Polym. 2020, 17, 2000099. [Google Scholar] [CrossRef]
- Sera, B.; Špatenka, P.; Šerý, M.; Vrchotova, N.; Hrušková, I. Influence of Plasma Treatment on Wheat and Oat Germination and Early Growth. IEEE Trans. Plasma Sci. 2010, 38, 2963–2968. [Google Scholar] [CrossRef]
- Matra, K. Atmospheric Non-Thermal Argon–Oxygen Plasma for Sunflower Seedling Growth Improvement. Jpn. J. Appl. Phys. 2017, 57, 01AG03. [Google Scholar] [CrossRef]
- Kordas, L.; Pusz, W.; Czapka, T.; Kacprzyk, R. The Effect of Low-Temperature Plasma on Fungus Colonization of Winter Wheat Grain and Seed Quality. Pol. J. Environ. Stud. 2015, 24, 433–438. [Google Scholar]
- Ndiffo Yemeli, G.B.; Švubová, R.; Kostolani, D.; Kyzek, S.; Machala, Z. The Effect of Water Activated by Nonthermal Air Plasma on the Growth of Farm Plants: Case of Maize and Barley. Plasma Process. Polym. 2020, 18, 2000205. [Google Scholar] [CrossRef]
- Takaki, K.; Hayashi, N.; Wang, D.; Ohshima, T. High-Voltage Technologies for Agriculture and Food Processing. J. Phys. Appl. Phys. 2019, 52, 473001. [Google Scholar] [CrossRef]
- Hojnik, N.; Modic, M.; Žigon, D.; Kovač, J.; Jurov, A.; Dickenson, A.; Walsh, J.L.; Cvelbar, U. Cold Atmospheric Pressure Plasma-Assisted Removal of Aflatoxin B1 from Contaminated Corn Kernels. Plasma Process. Polym. 2021, 18, 2000163. [Google Scholar] [CrossRef]
- Dufour, T.; Gutierrez, Q.; Bailly, C. Sustainable Improvement of Seeds Vigor Using Dry Atmospheric Plasma Priming: Evidence through Coating Wettability, Water Uptake, and Plasma Reactive Chemistry. J. Appl. Phys. 2021, 129, 084902. [Google Scholar] [CrossRef]
- Măgureanu, M.; Sîrbu, R.; Dobrin, D.; Gîdea, M. Stimulation of the Germination and Early Growth of Tomato Seeds by Non-Thermal Plasma. Plasma Chem. Plasma Process. 2018, 38, 989–1001. [Google Scholar] [CrossRef]
- Judée, F.; Dufour, T. Seed-Packed Dielectric Barrier Device for Plasma Agriculture: Understanding Its Electrical Properties through an Equivalent Electrical Model. J. Appl. Phys. 2020, 128, 044901. [Google Scholar] [CrossRef]
- Randeniya, L.K.; Groot, G.J.J.B. de Non-Thermal Plasma Treatment of Agricultural Seeds for Stimulation of Germination, Removal of Surface Contamination and Other Benefits: A Review. Plasma Process. Polym. 2015, 12, 608–623. [Google Scholar] [CrossRef]
- Li, L.; Li, J.; Shen, M.; Hou, J.; Shao, H.; Dong, Y.; Jiang, J. Improving Seed Germination and Peanut Yields by Cold Plasma Treatment. Plasma Sci. Technol. 2016, 18, 1027–1033. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.L.S.D.; Farias, M.D.L.; Vitoriano, J.D.O.; Alves Júnior, C.; Torres, S.B. Use of Atmospheric Plasma in Germination of Hybanthus Calceolaria (l.) Schulze-Menz Seeds. Rev. Caatinga 2018, 31, 632–639. [Google Scholar] [CrossRef] [Green Version]
- Puač, N.; Škoro, N.; Spasić, K.; Živković, S.; Milutinović, M.; Malović, G.; Petrović, Z.L. Activity of Catalase Enzyme in Paulownia Tomentosa Seeds during the Process of Germination after Treatments with Low Pressure Plasma and Plasma Activated Water. Plasma Process. Polym. 2018, 15, 1700082. [Google Scholar] [CrossRef]
- Zambon, Y.; Contaldo, N.; Laurita, R.; Várallyay, E.; Canel, A.; Gherardi, M.; Colombo, V.; Bertaccini, A. Plasma Activated Water Triggers Plant Defence Responses. Sci. Rep. 2020, 10, 19211. [Google Scholar] [CrossRef]
- Terebun, P.; Kwiatkowski, M.; Starek, A.; Reuter, S.; Mok, Y.S.; Pawłat, J. Impact of Short Time Atmospheric Plasma Treatment on Onion Seeds. Plasma Chem. Plasma Process. 2021, 41, 559–571. [Google Scholar] [CrossRef]
- Nishime, T.M.C.; Wannicke, N.; Horn, S.; Weltmann, K.-D.; Brust, H. A Coaxial Dielectric Barrier Discharge Reactor for Treatment of Winter Wheat Seeds. Appl. Sci. 2020, 10, 7133. [Google Scholar] [CrossRef]
- Veerana, M.; Choi, E.H.; Park, G. Influence of Non-Thermal Atmospheric Pressure Plasma Jet on Extracellular Activity of α-Amylase in Aspergillus Oryzae. Appl. Sci. 2021, 11, 691. [Google Scholar] [CrossRef]
- Watanabe, S.; Ono, R.; Hayashi, N.; Shiratani, M.; Tashiro, K.; Kuhara, S.; Inoue, A.; Yasuda, K.; Hagiwara, H. Growth Enhancement and Gene Expression of Arabidopsis Thaliana Irradiated with Active Oxygen Species. Jpn. J. Appl. Phys. 2016, 55, 07LG10. [Google Scholar] [CrossRef]
- Pawłat, J.; Starek, A.; Sujak, A.; Terebun, P.; Kwiatkowski, M.; Budzeń, M.; Andrejko, D. Effects of Atmospheric Pressure Plasma Jet Operating with DBD on Lavatera Thuringiaca L. Seeds’ Germination. PLOS ONE 2018, 13, e0194349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.; Li, J.; Dong, Y. Effect of Cold Plasma Treatment on Seedling Growth and Nutrient Absorption of Tomato. Plasma Sci. Technol. 2018, 20, 044007. [Google Scholar] [CrossRef] [Green Version]
- Bormashenko, E.; Shapira, Y.; Grynyov, R.; Whyman, G.; Bormashenko, Y.; Drori, E. Interaction of Cold Radiofrequency Plasma with Seeds of Beans (Phaseolus Vulgaris). J. Exp. Bot. 2015, 66, 4013–4021. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Guo, H.; Zong, J.; Chen, J.; Wang, Y.; LI, J.; LI, D.; SHAO, H.; LIU, J. Influence of Low-Vacuum Helium Cold Plasma Pre-Treatment on the Rooting and Root Growth of Zoysiagrass (Zoysia Willd.) Stolon Cuttings. Plasma Sci. Technol. 2019, 21, 055504. [Google Scholar] [CrossRef]
- Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.E.; Graham, W.G.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Maric, D.; Reid, J.P.; Ceriani, E.; et al. Plasma–Liquid Interactions: A Review and Roadmap. Plasma Sources Sci. Technol. 2016, 25, 053002. [Google Scholar] [CrossRef]
- Kelar Tučeková, Z.; Vacek, L.; Krumpolec, R.; Kelar, J.; Zemánek, M.; Černák, M.; Růžička, F. Multi-Hollow Surface Dielectric Barrier Discharge for Bacterial Biofilm Decontamination. Molecules 2021, 26, 910. [Google Scholar] [CrossRef]
- Mai-Prochnow, A.; Zhou, R.; Zhang, T.; Ostrikov, K.K.; Mugunthan, S.; Rice, S.A.; Cullen, P.J. Interactions of Plasma-Activated Water with Biofilms: Inactivation, Dispersal Effects and Mechanisms of Action. Npj Biofilms Microbiomes 2021, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Ki, S.H.; Noh, H.; Ahn, G.R.; Kim, S.H.; Kaushik, N.K.; Choi, E.H.; Lee, G.J. Influence of Nonthermal Atmospheric Plasma-Activated Water on the Structural, Optical, and Biological Properties of Aspergillus Brasiliensis Spores. Appl. Sci. 2020, 10, 6378. [Google Scholar] [CrossRef]
- Kučerová, K.; Machala, Z.; Hensel, K. Transient Spark Discharge Generated in Various N2/O2 Gas Mixtures: Reactive Species in the Gas and Water and Their Antibacterial Effects. Plasma Chem. Plasma Process. 2020, 40, 749–773. [Google Scholar] [CrossRef]
- Janda, M.; Martišovitš, V.; Hensel, K.; Machala, Z. Generation of Antimicrobial NOx by Atmospheric Air Transient Spark Discharge. Plasma Chem. Plasma Process. 2016, 36, 767–781. [Google Scholar] [CrossRef]
- Šimečková, J.; Krčma, F.; Klofáč, D.; Dostál, L.; Kozáková, Z. Influence of Plasma-Activated Water on Physical and Physical–Chemical Soil Properties. Water 2020, 12, 2357. [Google Scholar] [CrossRef]
- Gamaleev, V.; Iwata, N.; Ito, G.; Hori, M.; Hiramatsu, M.; Ito, M. Scalable Treatment of Flowing Organic Liquids Using Ambient-Air Glow Discharge for Agricultural Applications. Appl. Sci. 2020, 10, 801. [Google Scholar] [CrossRef] [Green Version]
- Park, D.; Dobrynin, D.; Fridman, G.; Fridman, A. Effects of Plasma Treated Water on Plants. In Proceedings of the 2012 Abstracts IEEE International Conference on Plasma Science, Edinburgh, UK, 8–13 July 2012. [Google Scholar]
- Laurita, R.; Contaldo, N.; Zambon, Y.; Bisag, A.; Canel, A.; Gherardi, M.; Laghi, G.; Bertaccini, A.; Colombo, V. The Use of Plasma-Activated Water in Viticulture: Induction of Resistance and Agronomic Performance in Greenhouse and Open Field. Plasma Process. Polym. 2021, 18, 2000206. [Google Scholar] [CrossRef]
- Zhai, Y.; Liu, S.; Xiang, Q.; Lyu, Y.; Shen, R. Effect of Plasma-Activated Water on the Microbial Decontamination and Food Quality of Thin Sheets of Bean Curd. Appl. Sci. 2019, 9, 4223. [Google Scholar] [CrossRef] [Green Version]
- Kučerová, K.; Henselová, M.; Slováková, Ľ.; Bačovčinová, M.; Hensel, K. Effect of Plasma Activated Water, Hydrogen Peroxide, and Nitrates on Lettuce Growth and Its Physiological Parameters. Appl. Sci. 2021, 11, 1985. [Google Scholar] [CrossRef]
- Fan, L.; Liu, X.; Ma, Y.; Xiang, Q. Effects of Plasma-Activated Water Treatment on Seed Germination and Growth of Mung Bean Sprouts. J. Taibah Univ. Sci. 2020, 14, 823–830. [Google Scholar] [CrossRef]
- Sajib, S.A.; Billah, M.; Mahmud, S.; Miah, M.; Hossain, F.; Omar, F.B.; Roy, N.C.; Hoque, K.M.F.; Talukder, M.R.; Kabir, A.H.; et al. Plasma Activated Water: The next Generation Eco-Friendly Stimulant for Enhancing Plant Seed Germination, Vigor and Increased Enzyme Activity, a Study on Black Gram (Vigna Mungo L.). Plasma Chem. Plasma Process. 2020, 40, 119–143. [Google Scholar] [CrossRef]
- Pawłat, J.; Terebun, P.; Kwiatkowski, M.; Tarabová, B.; Kovaľová, Z.; Kučerová, K.; Machala, Z.; Janda, M.; Hensel, K. Evaluation of Oxidative Species in Gaseous and Liquid Phase Generated by Mini-Gliding Arc Discharge. Plasma Chem. Plasma Process. 2019, 39, 627–642. [Google Scholar] [CrossRef] [Green Version]
- Pawłat, J.; Starek, A.; Sujak, A.; Kwiatkowski, M.; Terebun, P.; Budzeń, M. Effects of Atmospheric Pressure Plasma Generated in GlidArc Reactor on Lavatera Thuringiaca L. Seeds’ Germination. Plasma Process. Polym. 2018, 15, 1700064. [Google Scholar] [CrossRef]
- International Rules for Seed Testing; International Seed Testing Association: Bassersdorf, Switzerland, 2017.
- Kopacki, M.; Parafiniuk, S.; Skwaryło-Bednarz, B. Fungi Colonizing Chrysanthemums Plants Cultivated in the Field in Different Protection Systems. Fresenius Environ. Bull. 2018, 27, 2751–2760. [Google Scholar]
- Booth, C. The Genus Fusarium; Commonwealth Mycological Institute: Kew, Surrey, 1971. [Google Scholar]
- Barnett, H.L.; Hunter, B.B. Illustrated Genera of Imperfect Fungi, 3rd ed.; Burgess Publishing Company: Minneapolis, MN, USA, 1972. [Google Scholar]
- Domsch, K.H.; Gams, W.; Anderson, T.-H. Compendium of Soil Fungi; Academic Press: London, UK, 1980; Volume 1, ISBN 978-0-12-220401-2. [Google Scholar]
- Marcinkowska, J. Oznaczanie Rodzajów Grzybów Sensu Lato Ważnych w Fitopatologii; Powszechne Wydawnictwo Rolnicze i Leśne: Warszawa, Poland, 2012. [Google Scholar]
- Chomontowski, C.; Podlaski, S. Impact of Sugar Beet Seed Priming Using the SMP Method on the Properties of the Pericarp. BMC Plant Biol. 2020, 20, 32. [Google Scholar] [CrossRef]
- Hermann, K.; Meinhard, J.; Dobrev, P.; Linkies, A.; Pesek, B.; Heß, B.; Macháčková, I.; Fischer, U.; Leubner-Metzger, G. 1-Aminocyclopropane-1-Carboxylic Acid and Abscisic Acid during the Germination of Sugar Beet (Beta Vulgaris L.): A Comparative Study of Fruits and Seeds. J. Exp. Bot. 2007, 58, 3047–3060. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Yamamoto, R. The Growth Inhibitors in Sugar Beet Seed Balls: II. Isolation of Potassium Nitrate as the Germination Inhibitor and Hypocotyl Stimulating Substance. Jpn. J. Crop Sci. 1975, 44, 465–470. [Google Scholar] [CrossRef] [Green Version]
- Ignatz, M.; Hourston, J.E.; Turečková, V.; Strnad, M.; Meinhard, J.; Fischer, U.; Steinbrecher, T.; Leubner-Metzger, G. The Biochemistry Underpinning Industrial Seed Technology and Mechanical Processing of Sugar Beet. Planta 2019, 250, 1717–1729. [Google Scholar] [CrossRef] [Green Version]
- Inoue, K.; Yamamoto, R. The Growth Inhibitors in Sugar Beet Seed Balls: I. Isolation of Mono-Sodium Oxalate as a Root Growth Inhibitor. Jpn. J. Crop Sci. 1974, 43, 439–444. [Google Scholar] [CrossRef] [Green Version]
- Junttila, O. Germination Inhibitors in Fruit Extracts of Red Beet (Beta Vulgaris Cv. Rubra). J. Exp. Bot. 1976, 27, 827–836. [Google Scholar] [CrossRef]
- Dawidowicz-Grzegorzewska, A. Ultrastructure of Carrot Seeds during Matriconditioning with Micro-Cel E. Ann. Bot. 1997, 79, 535–545. [Google Scholar] [CrossRef]
- Miranda, R.M.; Dias, D.C.; Picoli, E.A.; Silva, P.P.; Nascimento, W.M. Physiological Quality, Anatomy and Histochemistry during the Development of Carrot Seeds ( Daucus Carota L.). Ciênc. E Agrotecnologia 2017, 41, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Bercu, R.; Broască, L. Comparative Histoanatomical Aspects of the Fruit of Some Apiaceae Lindl. Fruit Used for Therapeutic Purposes. Ann. Romanian Soc. Cell Biol. 2012, 17, 265–270. [Google Scholar]
- Alves Junior, C.; de Oliveira Vitoriano, J.; da Silva, D.L.S.; de Lima Farias, M.; de Lima Dantas, N.B. Water Uptake Mechanism and Germination of Erythrina Velutina Seeds Treated with Atmospheric Plasma. Sci. Rep. 2016, 6, 33722. [Google Scholar] [CrossRef]
- Kitazaki, S.; Sarinont, T.; Koga, K.; Hayashi, N.; Shiratani, M. Plasma Induced Long-Term Growth Enhancement of Raphanus Sativus L. Using Combinatorial Atmospheric Air Dielectric Barrier Discharge Plasmas. Curr. Appl. Phys. 2014, 14, S149–S153. [Google Scholar] [CrossRef]
- Ji, S.-H.; Choi, K.-H.; Pengkit, A.; Im, J.S.; Kim, J.S.; Kim, Y.H.; Park, Y.; Hong, E.J.; kyung Jung, S.; Choi, E.-H.; et al. Effects of High Voltage Nanosecond Pulsed Plasma and Micro DBD Plasma on Seed Germination, Growth Development and Physiological Activities in Spinach. Arch. Biochem. Biophys. 2016, 605, 117–128. [Google Scholar] [CrossRef]
- Zahoranová, A.; Henselová, M.; Hudecová, D.; Kaliňáková, B.; Kováčik, D.; Medvecká, V.; Černák, M. Effect of Cold Atmospheric Pressure Plasma on the Wheat Seedlings Vigor and on the Inactivation of Microorganisms on the Seeds Surface. Plasma Chem. Plasma Process. 2016, 36, 397–414. [Google Scholar] [CrossRef]
- Starek, A.; Sagan, A.; Andrejko, D.; Chudzik, B.; Kobus, Z.; Kwiatkowski, M.; Terebun, P.; Pawłat, J. Possibility to Extend the Shelf Life of NFC Tomato Juice Using Cold Atmospheric Pressure Plasma. Sci. Rep. 2020, 10, 20959. [Google Scholar] [CrossRef]
- Škarpa, P.; Klofáč, D.; Krčma, F.; Šimečková, J.; Kozáková, Z. Effect of Plasma Activated Water Foliar Application on Selected Growth Parameters of Maize (Zea Mays L.). Water 2020, 12, 3545. [Google Scholar] [CrossRef]
- Guo, D.; Liu, H.; Zhou, L.; Xie, J.; He, C. Plasma-Activated Water Production and Its Application in Agriculture. J. Sci. Food Agric. 2021. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.; Rashid, M.M.; Reza, M.A.; Talukder, M.R. Combined Effects of Air Plasma Seed Treatment and Foliar Application of Plasma Activated Water on Enhanced Paddy Plant Growth and Yield. Plasma Chem. Plasma Process. 2021, 41, 1081–1099. [Google Scholar] [CrossRef]
- Zhou, R.; Li, J.; Zhou, R.; Zhang, X.; Yang, S. Atmospheric-Pressure Plasma Treated Water for Seed Germination and Seedling Growth of Mung Bean and Its Sterilization Effect on Mung Bean Sprouts. Innov. Food Sci. Emerg. Technol. 2019, 53, 36–44. [Google Scholar] [CrossRef]
- Adhikari, B.; Adhikari, M.; Park, G. The Effects of Plasma on Plant Growth, Development, and Sustainability. Appl. Sci. 2020, 10, 6045. [Google Scholar] [CrossRef]
- Čech, J.; Sťahel, P.; Ráheľ, J.; Prokeš, L.; Rudolf, P.; Maršálková, E.; Maršálek, B. Mass Production of Plasma Activated Water: Case Studies of Its Biocidal Effect on Algae and Cyanobacteria. Water 2020, 12, 3167. [Google Scholar] [CrossRef]
- Ihara, S.; Sakai, T.; Yoshida, Y.; Nishiyama, H. Fundamental Characteristics of Discharge Plasma Generated in a Water Cavitation Field. J. Electrost. 2018, 93, 110–117. [Google Scholar] [CrossRef]
- Ihara, S.; Nishiyama, H.; Matsunaga, T.; Yoshida, Y.; Tokuyama, Y.; Terato, H. Improving the Efficiency of a Water-Treatment System Based on Water Cavitation and Plasma Using a Nozzle-Less Reactor. AIP Adv. 2019, 9, 045005. [Google Scholar] [CrossRef] [Green Version]
Plasma Treatment Time [min] | H2O2 [µM] | NO2− [mM] | pH |
---|---|---|---|
5 | 6 ± 1 | 1.9 ± 0.4 | 4.2 ± 0.2 |
10 | 7 ± 3 | 2.4 ± 0.3 | 3.7 ± 0.1 |
20 | 12 ± 5 | 2.9 ± 0.6 | 3.3 ± 0.3 |
Substance | Quantity |
---|---|
Saccharose | 38 g |
Agar | 20 g |
NH4NO3 | 0.7 g |
MgSO4 × 7 H2O | 0.3 g |
NH2PO4 | 0.3 g |
FeCl3 × 7 H2O | trace amounts |
ZnSO4 × 7 H2O | trace amounts |
CuSO4 × 7 H2O | trace amounts |
MnSO4 × 7 H2O | trace amounts |
Beta Vulgaris | Daucus Carota | |||
---|---|---|---|---|
GEN | GC | GEN | GC | |
Control | 0.78 b | 0.9 ab | 0.08 abcd | 0.08 abcd |
NaOCl | 0.9 ab | 0.94 ab | 0.4 ef | 0.42 f |
PAW 5′ | 0.94 ab | 0.94 ab | 0.06 ab | 0.22 cdef |
PAW 10′ | 0.94 ab | 0.98 a | 0.1 ac | 0.22 bdef |
PAW 20′ | 1.0 a | 1.0 a | 0.18 abcde | 0.18 abcde |
Beta Vulgaris | Daucus Carota |
---|---|
Germination rate | |
Sprouts’ length | |
Species of Fungus | Control | NaOCl | GA5′ | GA10′ | GA20′ | Total |
---|---|---|---|---|---|---|
Alternaria alternata (Fr.) Keissl. | 2 | 0 | 1 | 0 | 11 | 14 |
Aspergillus niger Tiegh | 3 | 0 | 2 | 0 | 0 | 5 |
Botrytis cinerea Pers. | 1 | 0 | 0 | 0 | 0 | 1 |
Chaetomium cochliodes Palliser | 0 | 0 | 5 | 0 | 2 | 7 |
Clonostachys rosea (Link) Schroers | 0 | 16 | 0 | 0 | 0 | 16 |
Epicoccum nigrum Link | 0 | 0 | 10 | 8 | 0 | 18 |
Fusarium solani (Mart.) Sacc. | 2 | 0 | 0 | 0 | 0 | 2 |
Penicillium expansum Link | 0 | 0 | 0 | 1 | 2 | 3 |
Penicillium nigricans K.M. Zal. | 1 | 0 | 2 | 0 | 0 | 3 |
Truncatella truncata Lev. | 2 | 0 | 0 | 0 | 0 | 2 |
Trichoderma harzianum Rifai | 0 | 4 | 1 | 0 | 1 | 6 |
Trichoderma koningii Oudem. | 2 | 2 | 0 | 3 | 0 | 7 |
Trichothecium roseum (Pers.) Link | 0 | 0 | 0 | 0 | 1 | 1 |
Total | 13 | 22 | 21 | 12 | 17 | 85 |
Species of Fungus | Control | NaOCl | GA5′ | GA10′ | GA20′ | Total |
---|---|---|---|---|---|---|
Alternaria alternata (Fr.) Keissl. | 49 | 0 | 48 | 48 | 48 | 193 |
Alternaria radicina Meier, Drechsler & E.D. Eddy | 7 | 4 | 0 | 0 | 0 | 11 |
Aspergillus niger Tiegh | 2 | 6 | 2 | 0 | 2 | 12 |
Chaetomium cochliodes Palliser | 0 | 0 | 1 | 0 | 0 | 1 |
Cladosporium sp. | 0 | 15 | 0 | 0 | 0 | 15 |
Clonostachys rosea (Link) Schroers | 0 | 2 | 0 | 0 | 0 | 2 |
Epicoccum nigrum Link | 0 | 1 | 0 | 0 | 0 | 1 |
Fusarium avenaceum (Fr.) Sacc. | 0 | 0 | 0 | 0 | 2 | 2 |
Mucor mucedo Fresen. | 0 | 0 | 0 | 2 | 0 | 2 |
Penicillium expansum Link | 0 | 0 | 0 | 0 | 3 | 3 |
Stemphylium botryosum Wallr. | 0 | 12 | 0 | 0 | 0 | 12 |
Trichoderma harzianum Rifai | 2 | 2 | 0 | 0 | 0 | 4 |
Trichoderma koningii Oudem. | 0 | 0 | 0 | 1 | 0 | 1 |
Total | 60 | 42 | 51 | 51 | 55 | 259 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terebun, P.; Kwiatkowski, M.; Hensel, K.; Kopacki, M.; Pawłat, J. Influence of Plasma Activated Water Generated in a Gliding Arc Discharge Reactor on Germination of Beetroot and Carrot Seeds. Appl. Sci. 2021, 11, 6164. https://doi.org/10.3390/app11136164
Terebun P, Kwiatkowski M, Hensel K, Kopacki M, Pawłat J. Influence of Plasma Activated Water Generated in a Gliding Arc Discharge Reactor on Germination of Beetroot and Carrot Seeds. Applied Sciences. 2021; 11(13):6164. https://doi.org/10.3390/app11136164
Chicago/Turabian StyleTerebun, Piotr, Michał Kwiatkowski, Karol Hensel, Marek Kopacki, and Joanna Pawłat. 2021. "Influence of Plasma Activated Water Generated in a Gliding Arc Discharge Reactor on Germination of Beetroot and Carrot Seeds" Applied Sciences 11, no. 13: 6164. https://doi.org/10.3390/app11136164
APA StyleTerebun, P., Kwiatkowski, M., Hensel, K., Kopacki, M., & Pawłat, J. (2021). Influence of Plasma Activated Water Generated in a Gliding Arc Discharge Reactor on Germination of Beetroot and Carrot Seeds. Applied Sciences, 11(13), 6164. https://doi.org/10.3390/app11136164