Energy, Exergy, and Environmental (3E) Analysis of Hydrocarbons as Low GWP Alternatives to R134a in Vapor Compression Refrigeration Configurations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Refrigerants under Consideration
2.2. System Configurations
2.3. Theoretical Model
3. Results and Discussion
3.1. Energy Analysis
3.2. Exergy Analysis
3.3. Environmental Impact Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Nomenclature | |
COP | coefficient of performance (-) |
rate of exergy (kW) | |
ex | specific exergy (kJ kg−1) |
h | specific enthalpy (kJ kg−1) |
refrigerant mass flow rate (kg s−1) | |
P | pressure (MPa) |
m | total refrigerant charge of the system (kg) |
heat transfer rate (kW) | |
T | temperature (°C) |
electric power consumption (kW) | |
annual energy consumption (kWh) | |
L | annual refrigerant leakage rate (kg year−1) |
RI | relative irreversibility (–) |
s | specific entropy (kJ kg−1 K−1) |
Greek symbols | |
α | recycling factor of the refrigerant |
β | indirect emission factor (kgCO2-eq. kWh−1) |
ε | effectiveness (-) |
η | exergy efficiency (-) |
Δ | variation |
Subscripts | |
c | cooling |
comp | compressor |
des | destruction |
evap | evaporator |
is | isentropic |
ref | refrigerant |
Abbreviations | |
CFC | chlorofluorocarbon |
GHG | greenhouse gas |
GWP | global warming potential |
HCFC | hydrochlorofluorocarbon |
HCFO | hydrochlorofluoroolefin |
HFC | hydrofluorocarbon |
HFO | hydrofluoroolefin |
IHX | internal heat exchanger |
ODP | ozone depletion potential |
PR | Pressure ratio |
SS | single stage |
TEWI | total equivalent warming impact |
References
- Harby, K. Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: An updated overview. Renew. Sustain. Energy Rev. 2017, 73, 1247–1264. [Google Scholar] [CrossRef]
- Hasbali, A.; Kalinci, Y. A review of heat pump water heating systems. Renew. Sustain. Energy Rev. 2009, 13, 1211–1229. [Google Scholar]
- Huang, B.J.; Lee, J.P.; Chyng, J.P. Heat-pipe enhanced solar-assisted heat pump water heater. Sol. Energy 2005, 78, 375–381. [Google Scholar] [CrossRef]
- Ito, S.; Miura, N. Studies of a heat pump using water and air heat sources in parallel. Heat Transf. Asian Res. 2000, 29, 473–490. [Google Scholar] [CrossRef]
- Sarbu, I. A review on substitution strategy of non-ecological refrigerants from vapour compression-based refrigeration air-conditioning and heat pump systems. Int. J. Refrig. 2014, 46, 123–141. [Google Scholar] [CrossRef]
- Zhou, W.; Gan, Z. A potential approach for reducing the R290 charge in air conditioners and heat pumps. Int. J. Refrig. 2019, 101, 47–55. [Google Scholar] [CrossRef]
- Dalkilic, A.S.; Wongwises, S. A performance comparison of vapour-compression refrigeration system using various alternative refrigerants. Int. Commun. Heat Mass Transf. 2010, 37, 1340–1349. [Google Scholar] [CrossRef]
- Yu, C.C.; Teng, T.P. Retrofit assessment of refrigerator using hydrocarbon refrigerants. Appl. Therm. Eng. 2014, 66, 507–518. [Google Scholar] [CrossRef]
- Calleja-Anta, D.; Nebot-Andrés, L.; Catalán-Gil, J.; Sánchez, D.; Cabello, R.; Llopis, R. Thermodynamic screening of alternative refrigerants for R290 and R600a. Results Eng. 2020, 5, 100081. [Google Scholar] [CrossRef]
- Ghoubali, R.; Byrne, P.; Bazantay, F. Refrigerant charge optimisation for propane heat pump water heaters. Int. J. Refrig. 2017, 76, 230–244. [Google Scholar] [CrossRef]
- Yelishala, S.; Kannaiyan, K.; Sadr, R.; Wang, Z.; Levendis, Y.; Metghalchi, H. Performance maximization by temperature glide matching in energy exchangers of cooling systems operating with natural hydrocarbon/CO2 refrigerants. Int. J. Refrig. 2020, 119, 294–304. [Google Scholar] [CrossRef]
- Mohanraj, M.; Jayaraj, S.; Muraleedharan, C.; Chandrasekar, P. Experimental investigation of R290/R600a mixture as an alternative to R134a in a domestic refrigerator. Int. J. Therm. Sci. 2009, 48, 1036–1042. [Google Scholar] [CrossRef]
- Urchueguıa, J.F.; Corberan, J.M.; Gonzalvez, J.; Dıaz, J.M. Experimental characterization of a commercial-size scroll and reciprocating compressor working with R22 and propane (R290) as refrigerant. Ecobrium J. AIRAH 2004, 23, 23–25. [Google Scholar]
- Khalid, A.J.; Qusay, R.A. Experimental assessment of residential split type airconditioning systems using alternative refrigerants to R-22 at high ambient temperatures. Energy Convers. Manag. 2014, 86, 496–506. [Google Scholar]
- Corberán, J.M.; Israel, O.; Martínez, J.G. Charge optimization study of a reversible water-to-water propane heat pump. Int. J. Refrig. 2008, 31, 716–726. [Google Scholar] [CrossRef]
- Wongwises, S.; Kamboon, A.; Orachon, B. Experimental investigation of hydrocarbon mixtures to replace HFC-134a in an automotive air conditioning system. Energ. Convers. Manag. 2006, 47, 1644–1659. [Google Scholar] [CrossRef]
- Fan, C.; Yan, G.; Yu, J. Theoretical study on a modified heat pump cycle with zeotropic mixture R32/R290 for district heating in cold region. Appl. Therm. Eng. 2019, 156, 702–707. [Google Scholar] [CrossRef]
- Ju, F.; Fan, X.; Chen, Y.; Ouyang, H.; Kuang, A.; Ma, S.; Wang, F. Experiment and simulation study on performances of heat pump water heater using blend of R744/R290. Energ. Build. 2018, 169, 148–156. [Google Scholar] [CrossRef]
- Malwe, P.D.; Gawali, B.S.; Thakre, S.D. Exergy analysis of vapour compression refrigeration system. Int. J. Therm. Technol. 2014, 4, 54–57. [Google Scholar]
- Bayrakci, H.C.; Ozyur, A.E. Energy and exergy analysis of vapor compression refrigeration system using pure hydrocarbon refrigerants. Int. J. Energy Res. 2009, 33, 1070–1075. [Google Scholar] [CrossRef]
- El-Morsi, M. Energy and exergy analysis of LPG (liquefied petroleum gas) as a drop in replacement for R134a in domestic refrigerators. Energy 2015, 86, 344–353. [Google Scholar] [CrossRef]
- Makhnatch, P.; Khodabandeh, R. The role of environmental metrics (GWP, TEWI, LCCP) in the selection of low GWP refrigerant. Energy Procedia 2014, 61, 2460–2463. [Google Scholar] [CrossRef] [Green Version]
- Lemmon, E.W.; Bell, I.H.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database: Reference Fluid Thermodynamic and Transport Properties-REFPROP; Version 8; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2007.
- Royo, C.; Arpagaus, C.; Mota-Babiloni, A.; Navarro-Esbrí, J.; Bertsch, S.S. Advanced high temperature heat pump configurations using low GWP refrigerants for industrial waste heat recovery: A comprehensive study. Energ. Convers. Manag. 2021, 229, 113752. [Google Scholar] [CrossRef]
- Qi, H.; Liu, F.; Yu, J. Performance analysis of a novel hybrid vapor injection cycle with subcooler and flash tank for air-source heat pumps. Int. J. Refrig. 2017, 74, 540–549. [Google Scholar] [CrossRef]
- Royo, C.; Navarro-Esbrí, J.; Mota-Babiloni, A.; Molés, F.; Albuixech, M. Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery. Appl. Energy 2019, 253, 113504. [Google Scholar] [CrossRef]
- Pitarch, M.; Hervas-Blasco, E.; Navarro-Peris, E.; Corberán, J.M. Exergy analysis on a heat pump working between a heat sink and a heat source of finite heat capacity rate. Int. J. Refrig. 2019, 99, 337–350. [Google Scholar] [CrossRef]
- Mota-Babiloni, A.; Barbosa, J.R.; Makhnatch, P.; Lozano, J.A. Assessment of the utilization of equivalent warming impact metrics in refrigeration, air conditioning and heat pump systems. Renew. Sust. Energ. Rev. 2020, 129, 109929. [Google Scholar] [CrossRef]
- Royo, C.; Esbrí, J.; Mota-Babiloni, A.; Albuixech, M.; Molés, F. Thermodynamic analysis of low GWP alternatives to HFC-245fa in high-temperature heat pumps: HCFO-1224yd(Z), HCFO-1233zd(E) and HFO-1336mzz(Z). Appl. Therm. Eng. 2019, 152, 762–777. [Google Scholar] [CrossRef]
- 2020 Grid Electricity Emissions Factors v1.4. Available online: https://www.carbonfootprint.com/.
R290 | R600a | R1270 | R134a | |
---|---|---|---|---|
Formula | C3H8 | C4H10 | C3H6 | C2H2F4 |
Molecular mass (g mol−1) | 44 | 58 | 42 | 102 |
Ozone depletion potential, ODP | 0 | 0 | 0 | 0 |
100-year global warming potential, GWP100 | 3 | 3 | 3 | 1430 |
Safety classification | A3 | A3 | A3 | A1 |
Critical temperature (K) | 369.9 | 407.8 | 364.2 | 374.2 |
Critical pressure (MPa) | 4.25 | 3.63 | 4.55 | 4.06 |
Saturation pressure at 280 K (MPa) | 0.588 | 0.201 | 0.716 | 0.377 |
Enthalpy of vaporization at 280 K (kJ kg−1) | 364.5 | 347.4 | 366.6 | 193.2 |
Vapor density at 280 K (kg m−3) | 12.8 | 5.4 | 15.05 | 18.7 |
Volumetric capacity at 280 K (kJ m−3) | 4646.9 | 1868.9 | 3197 | 3604.6 |
Saturation pressure at 341 K (MPa) | 2.50 | 1.05 | 2.96 | 2.04 |
SS | IHX | ECO | |
---|---|---|---|
R134a | 59.8 | 71.7 | 57.9 |
R290 | 58.9 | 70.4 | 57.1 |
R600a | 50.3 | 62.2 | 49.2 |
R1270 | 65.2 | 76.9 | 63.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghanbarpour, M.; Mota-Babiloni, A.; Badran, B.E.; Khodabandeh, R. Energy, Exergy, and Environmental (3E) Analysis of Hydrocarbons as Low GWP Alternatives to R134a in Vapor Compression Refrigeration Configurations. Appl. Sci. 2021, 11, 6226. https://doi.org/10.3390/app11136226
Ghanbarpour M, Mota-Babiloni A, Badran BE, Khodabandeh R. Energy, Exergy, and Environmental (3E) Analysis of Hydrocarbons as Low GWP Alternatives to R134a in Vapor Compression Refrigeration Configurations. Applied Sciences. 2021; 11(13):6226. https://doi.org/10.3390/app11136226
Chicago/Turabian StyleGhanbarpour, Morteza, Adrián Mota-Babiloni, Bassam E. Badran, and Rahmatollah Khodabandeh. 2021. "Energy, Exergy, and Environmental (3E) Analysis of Hydrocarbons as Low GWP Alternatives to R134a in Vapor Compression Refrigeration Configurations" Applied Sciences 11, no. 13: 6226. https://doi.org/10.3390/app11136226
APA StyleGhanbarpour, M., Mota-Babiloni, A., Badran, B. E., & Khodabandeh, R. (2021). Energy, Exergy, and Environmental (3E) Analysis of Hydrocarbons as Low GWP Alternatives to R134a in Vapor Compression Refrigeration Configurations. Applied Sciences, 11(13), 6226. https://doi.org/10.3390/app11136226