Compact Ultra-Wideband Series-Feed Microstrip Antenna Arrays for IoT Communications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Antenna Element
2.2. Log Periodic Antenna Arrays
2.3. Design of the Antenna Array
3. Results
3.1. Five Elements Array
3.2. Seven Elements Array
3.3. Nine Elements Array
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iffat Naqvi, S.; Hussain, N.; Iqbal, A.; Rahman, M.; Forsat, M.; Mirjavadi, S.S.; Amin, Y. Integrated LTE and Millimeter-Wave 5G MIMO Antenna System for 4G/5G Wireless Terminals. Sensors 2020, 20, 3926. [Google Scholar] [CrossRef] [PubMed]
- Romodin, V.B.; Oznobikhin, V.I.; Kopylov, V.V. Log periodic microstrip array. In Proceedings of the IEEE—Russia Conference. 1999 High Power Microwave Electronics: Measurements, Identification, Applications. MIA-ME’99 (Cat. No.99EX289), Novosibirsk, Russia, 23 September 1999; pp. IV4–IV6. [Google Scholar] [CrossRef]
- Rahim, M.K.A.; Gardner, P. Microstrip log periodic antenna using circuit simulator. In Proceedings of the 6th International SYmposium on Antennas, Propagation and EM Theory, Beijing, China, 28 October–1 November 2003; pp. 202–205. [Google Scholar] [CrossRef]
- Zengin, F. The Effects of the Trapezoidal Dipole Array Elements on Planar Log Periodic Antenna. In Proceedings of the 2019 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Granada, Spain, 9–13 September 2019; pp. 333–336. [Google Scholar] [CrossRef]
- Sepdiansah, T.; Mukhlis, Y.; Salam, M.F.A. A Printed Log-Periodic Dipole Array (LPDA) Antenna for 5G Application. In Proceedings of the 2019 Fourth International Conference on Informatics and Computing (ICIC), Semarang, Indonesia, 16–17 October 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Tapia-Rodríguez, R.E.; García-Juárez, A.; Noriega-Luna, J.R.; García-Delgado, L.A.; Gómez-Colin, R.; Zaldívar-Huerta, I.E.; Olvera-Cervantes, J.L. Design of Log-Periodic Dipole Array Antenna with Implemmented Extra Dipole. In Proceedings of the 2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, 5–7 September 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, J. A design of miniaturization LPDA antenna with ultra wideband. In Proceedings of the 2015 IEEE 6th International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), Shanghai, China, 28–30 October 2015; pp. 819–821. [Google Scholar] [CrossRef]
- Kubacki, R.; Czyżewski, M.; Laskowski, D. Enlarged Frequency Bandwidth of Truncated Log-Periodic Dipole Array Antenna. Electronics 2020, 9, 1300. [Google Scholar] [CrossRef]
- Sari, P.; Firdausi, A.; Hakim, G.P.N. The Design of Log Periodic Dipole Array Microstrip Antenna at Frequency 28 GHz. In Proceedings of the 2020 2nd International Conference on Broadband Communications, Wireless Sensors and Powering (BCWSP), Yogyakarta, Indonesia, 28–30 September 2020; pp. 140–143. [Google Scholar] [CrossRef]
- Benedix, W.; Brandenburg, D.; Dong, X.; Plettemeier, D. Broadband Printed Log-Periodic Antenna with Coaxial Feed. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 841–842. [Google Scholar] [CrossRef]
- Didouh, S.; Abri, M.; Badaoui, H.A. A novel design of bow-tie antennas array for uplink C-band applications based on fast and efficient computational equivalent model. In Proceedings of the 2017 Seminar on Detection Systems Architectures and Technologies (DAT), Algiers, Algeria, 20–22 February 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Wei, X.; Liu, J.; Long, Y. Printed Log-Periodic Monopole Array Antenna with a Simple Feeding Structure. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 58–61. [Google Scholar] [CrossRef]
- Gowda, E.D.; Prasad, V.N. Design of Log-Periodic Monopole Array Patch Antenna for UWB Applications using Alphabetic Slots on Partial Ground Plane. In Proceedings of the 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 2–4 July 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Tang, N.; Xu, D.; Li, Y.; Yu, Y.; Dai, W.; Gou, Q.; Du, Z. The design of wideband end-fire monopole antenna array. In Proceedings of the 2018 International Workshop on Antenna Technology (iWAT), Nanjing, China, 5–7 March 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Luong, X.T.; Nguyen, C.T.; Tran, M.T.; Truong, V.B.G. Design a log periodic fractal Koch microstrip antenna for S band and C band applications. In Proceedings of the 2015 International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh City, Vietnam, 14–16 October 2015; pp. 556–560. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, W.; Di, Y.; Hu, Z. A Planar Compact Helical Log-Periodic Array. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 845–846. [Google Scholar] [CrossRef]
- Muduli, A.; Mishra, R.K. Transmission Line Model for a Series fed Log-periodic Microstrip Antenna array. In Proceedings of the 2017 14th IEEE India Council International Conference (INDICON), Roorkee, India, 15–17 December 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Sharma, D.; Kumar, R. Design and analysis of five element microstrip log-periodic antenna. In Proceedings of the 2010 International Conference on Applications of Electromagnetism and Student Innovation Competition Awards (AEM2C), Taipei, Taiwan, 11–13 August 2010; pp. 210–214. [Google Scholar] [CrossRef]
- Veeramani, A.; Dwivedi, R.P. Compartive study of coplanar waveguide feed and microstrip feed for log periodic antennas. In Proceedings of the 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 19–20 February 2015; pp. 10–14. [Google Scholar] [CrossRef]
- Ismail, M.F.; Rahim, M.K.A.; Zubir, F.; Ayop, O. Log-Periodic patch antenna with tunable frequency. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, Italy, 11–15 April 2011; pp. 2165–2169. [Google Scholar]
- He, J.; Wu, Y.; Chen, D.; Zhang, M.; Hirokawa, J.; Liu, Q. Realization of a Wideband Series-Fed 4 W 4-Element Waveguide Slot Array in the X-band. IEEE Access 2021, 9, 83666–83675. [Google Scholar] [CrossRef]
- Lin, J.; Shen, W.; Yang, K. A Low-Sidelobe and Wideband Series-Fed Linear Dielectric Resonator Antenna Array. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 513–516. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Z.; Tang, M.-C.; Yi, D.; Ziolkowski, R.W. Compact Series-Fed Microstrip Patch Arrays Excited with Dolph–Chebyshev Distributions Realized with Slow Wave Transmission Line Feed Networks. IEEE Trans. Antennas Propag. 2020, 68, 7905–7915. [Google Scholar] [CrossRef]
- Chu, H.; Li, P.; Zhu, X.-H.; Hong, H.; Guo, Y. Bandwidth Improvement of Center-Fed Series Antenna Array Targeting for Base Stations in Offshore 5G Communications. IEEE Access 2019, 7, 33537–33543. [Google Scholar] [CrossRef]
- Boskovic, N.; Jokanovic, B.; Radovanovic, M.; Doncov, N.S. Novel Ku-Band Series-Fed Patch Antenna Array with Enhanced Impedance and Radiation Bandwidth. IEEE Trans. Antennas Propag. 2018, 66, 7041–7048. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Pan, Y.M.; Zheng, S.Y. Design of Series-Fed, Single-Layer, and Wideband Millimeter-Wave Microstrip Arrays. IEEE Trans. Antennas Propag. 2020, 68, 7017–7026. [Google Scholar] [CrossRef]
- Sacco, G.; Datanasio, P.; Pisa, S. A Wideband and Low-Sidelobe Series-Fed Patch Array at 5.8 GHz for Radar Applications. IEEE Antennas Wirel. Propag. Lett. 2019, 19, 9–13. [Google Scholar] [CrossRef]
- Hussain, N.; Jeong, M.-J.; Abbas, A.; Kim, N. Metasurface-Based Single-Layer Wideband Circularly Polarized MIMO Antenna for 5G Millimeter-Wave Systems. IEEE Access 2020, 8, 130293–130304. [Google Scholar] [CrossRef]
- Hussain, N.; Jeong, M.-J.; Park, J.; Kim, N. A Broadband Circularly Polarized Fabry-Perot Resonant Antenna Using a Single-Layered PRS for 5G MIMO Applications. IEEE Access 2019, 7, 42897–42907. [Google Scholar] [CrossRef]
- Varum, T.; Matos, J.N.; Pinho, P.; Abreu, R. Nonuniform Broadband Circularly Polarized Antenna Array for Vehicular Communications. IEEE Trans. Veh. Technol. 2015, 65, 7219–7227. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory Analysis and Design, 4th ed.; John Wiley & Sons: New York, NY, USA, 2005. [Google Scholar]
- Mayes, P.E. Frequency-Independent Antennas. In Antenna Handbook; Lo, Y.T., Lee, S.W., Eds.; Springer: Boston, MA, USA, 1988. [Google Scholar]
- Sabath, F.; Mokole, E.L.; Samaddar, S.N. Definition and classification of ultra-wideband signals and devices. URSI Radio Sci. Bull. 2005, 2005, 12–26. [Google Scholar]
- Varum, T.; Ramos, A.; Matos, J.N. Planar microstrip series-fed array for 5G applications with beamforming capabilities. In Proceedings of the 2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G), Dublin, Ireland, 30–31 August 2018; pp. 1–3. [Google Scholar] [CrossRef]
n | fn (GHz) | Ln = Wn (mm) | yn (mm) | In (mm) | Ln = Wn (mm) | yn (mm) | fn (GHz) |
---|---|---|---|---|---|---|---|
1 | 23.93 | 2.93 | 0.89 | 1.92 | 3.03 | 1.25 | 23.92 |
2 | 24.89 | 2.83 | 0.83 | 1.84 | 2.90 | 1.18 | 24.89 |
3 | 25.88 | 2.70 | 0.79 | 1.77 | 2.78 | 1.11 | 25.88 |
4 | 26.92 | 2.58 | 0.76 | 1.70 | 2.67 | 1.04 | 26.84 |
5 | 28 | 2.46 | 0.73 | 1.63 | 2.56 | 0.98 | 28.03 |
6 | 29.12 | 2.34 | 0.71 | 1.56 | 2.46 | 0.93 | 29.13 |
7 | 30.28 | 2.23 | 0.68 | 1.50 | 2.36 | 0.88 | 30.24 |
8 | 31.49 | 2.13 | 0.65 | 1.44 | 2.27 | 0.84 | 31.49 |
9 | 32.75 | 2.03 | 0.61 | 1.38 | 2.18 | 0.8 | 32.81 |
theoretical | practical/CST |
Dn (mm) | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 |
---|---|---|---|---|---|---|---|---|---|
Array 5 | 2.44 | 1.95 | 2.59 | 2.27 | 2.63 | ||||
Array 7 | 2.14 | 1.94 | 1.86 | 2.40 | 2.14 | 1.86 | 1.52 | ||
Array 9 | 3.08 | 2.66 | 2.23 | 1.98 | 2.99 | 2.52 | 2.20 | 2.05 | 1.98 |
Bandwidth (GHz) | Fractional BW Bw/fc | Gain (27 GHz) | Gain (28 GHz) | Gain (29 GHz) | Efficiency (27 GHz) | Efficiency (28 GHz) | Efficiency (29 GHz) | |
---|---|---|---|---|---|---|---|---|
Array 5 | 6.91 | 24.7% | 11.0 dBi | 10.6 dBi | 10.1 dBi | 88.8% | 87.7% | 87.0% |
Array 7 | 8.30 | 29.6% | 10.3 dBi | 10.7 dBi | 9.40 dBi | 83.3% | 82.7% | 82.0% |
Array 9 | 12.2 | 43.6% | 11.3 dBi | 11.7 dBi | 11.6 dBi | 84.1% | 86.8% | 86.6% |
Ref. | N° Elements | Frequency (GHz) | Bandwidth (%) | Gain (dBi) | Size(in wavelengths) |
---|---|---|---|---|---|
[21] | 4 × 4 | 9.5 | 12.3% | 20.0 | 3.8 λ0 × 3.52 λ0 |
[22] | 1 × 8 | 7.5 | 38.1% | 15.7 | Not mentioned |
[23] | 1 × 10 | 4.5 | 10.0% | 11.0 | 3.15 λ0 × 0.6 λ0 |
[24] | 1 × 12 | 4.9 | 20.5% | 19.0 | 9.1 λ0 × 1.3 λ0 |
[25] | 2 × 16 | 16.5 | 19.6% | 20.3 | 11 λ0 × 1.76 λ0 |
[26] | 1 × 4 | 27.0 | 21.4% | 12.8 | 2.7 λ0 × 0.9 λ0 |
[27] | 1 × 6 | 5.8 | 5.9% | 14.3 | Not mentioned |
This work | 1 × 9 | 28 | 44.0% | 12.0 | 3.59 λ0 × 1.3 λ0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varum, T.; Caiado, J.; Matos, J.N. Compact Ultra-Wideband Series-Feed Microstrip Antenna Arrays for IoT Communications. Appl. Sci. 2021, 11, 6267. https://doi.org/10.3390/app11146267
Varum T, Caiado J, Matos JN. Compact Ultra-Wideband Series-Feed Microstrip Antenna Arrays for IoT Communications. Applied Sciences. 2021; 11(14):6267. https://doi.org/10.3390/app11146267
Chicago/Turabian StyleVarum, Tiago, João Caiado, and João N. Matos. 2021. "Compact Ultra-Wideband Series-Feed Microstrip Antenna Arrays for IoT Communications" Applied Sciences 11, no. 14: 6267. https://doi.org/10.3390/app11146267
APA StyleVarum, T., Caiado, J., & Matos, J. N. (2021). Compact Ultra-Wideband Series-Feed Microstrip Antenna Arrays for IoT Communications. Applied Sciences, 11(14), 6267. https://doi.org/10.3390/app11146267