Study of Possible Frequency Dependence of Small AC Fields on Magnetic Flux Trapping in Niobium by Polarized Neutron Imaging
Abstract
:1. Introduction
2. Short Theory of Polarized Neutron Imaging
3. Experiments
3.1. Instrument, Samples and Field Cooling (FC)
3.2. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Remark
References and Note
- Ciovati, G.; Gurevich, A. Evidence of high-field radio-frequency hot spots due to trapped vortices in niobium cavities. Phys. Rev. ST Accel. Beams 2008, 11, 122001. [Google Scholar] [CrossRef] [Green Version]
- Aull, S.; Kugeler, O.; Knobloch, J. Trapped magnetic flux in superconducting niobium samples. Phys. Rev. ST Accel. Beams 2012, 15, 062001. [Google Scholar] [CrossRef]
- Vogt, J.-M.; Kugeler, O.; Knobloch, J. Impact of cool-down conditions at T c on the superconducting rf cavity quality factor. Phys. Rev. ST Accel. Beams 2013, 16, 102002. [Google Scholar] [CrossRef] [Green Version]
- Romanenko, A.; Grassellino, A.; Crawford, A.; Sergatskov, D.; Melnychuk, O. Ultra-high quality factors in superconducting niobium cavities in ambient magnetic fields up to 190 mG. Appl. Phys. Lett. 2014, 105, 234103. [Google Scholar] [CrossRef] [Green Version]
- Vogt, J.-M.; Kugeler, O.; Knobloch, J. High-Q operation of superconducting rf cavities: Potential impact of thermocurrents on the rf surface resistance. Phys. Rev. ST Accel. Beams 2015, 18, 042001. [Google Scholar] [CrossRef] [Green Version]
- Eichhorn, R.; Daly, C.; Furuta, F.; Ganshyn, A.; Ge, M.; Gonnella, D.; Hall, D.; Ho, V.; Hofstaetter, G.H.; Liepe, M.; et al. Cornell’s Main Linac Cryomodule for the Energy Recovery Linac Project. Phys. Rev. Accel. Beams 2016, 19, 012001. [Google Scholar] [CrossRef] [Green Version]
- Posen, S.; Checchin, M.; Crawford, A.C.; Grassellino, A.; Martinello, M.; Melnychuk, O.S.; Romanenko, A.; Sergatskov, D.A.; Trenikhina, Y. Efficient expulsion of magnetic flux in superconducting radiofrequency cavities for high Q 0 applications. J. Appl. Phys. 2016, 119, 213903. [Google Scholar] [CrossRef] [Green Version]
- Koszegi, J.; Kugeler, O.; Abou-Ras, D.; Knobloch, J.; Schaefer, R. A magneto-optical study on magnetic flux expulsion and pinning in high-purity niobium. J. Appl. Phys. 2017, 122, 173901. [Google Scholar] [CrossRef]
- Mühlbauer, S.; Pfleiderer, C.; Böni, P.; Laver, M.; Forgan, E.M.; Fort, D.; Keiderling, U.; Behr, G. Morphology of the superconducting vortex lattice in ultrapure niobium. Phys. Rev. Lett. 2009, 102, 136408. [Google Scholar] [CrossRef]
- Reimann, T.; Schulz, M.; Mildner, D.F.R.; Bleuel, M.; Brulet, A.; Harti, R.P.; Benka, G.; Bauer, A.; Böni, P. Domain formation in the type-II/1 superconductor niobium: Interplay of pinning, geometry, and attractive vortex vortex interaction. Phys. Rev. B 2017, 96, 144506. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, B.; Koszegi, J.; Alomari, K.; Kugeler, O.; Knobloch, J. Magnetometric mapping of superconducting RF cavities. Rev. Sci. Instrum. 2018, 89, 054706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knobloch, J. RF Superconductivity for Accelerators, Padamsee, H. In Proceedings of the 8th Workshop on RF Superconductivity, Padova, Italy, 6–10 October 1997; pp. 337–344. [Google Scholar]
- Benvenuti, C.; Calatroni, S.; Campisi, I.; Darriulat, P.; Durand, C.; Peck, M.; Russo, R.; Valente, A.-M. Niobium sputter-coated copper resonators. In Proceedings of the 8th Workshop on RF Superconductivity, Padova, Italy, 6–10 October 1997; pp. 331–335. [Google Scholar]
- Aull, S. Investigation of trapped magnetic flux in superconducting niobium samples. In Diplomarbeit; Humboldt-Universitaet Berlin: Berlin, Germany, 2011. [Google Scholar]
- Ciovati, G.; Gurevich, A. Measurement of RF losses due to trapped flux in a large grain Niobium cavity. In Proceedings of the 13th Workshop on RF Superconductivity, Berlin, Germany, 14–19 October 2007; pp. 132–136. [Google Scholar]
- Kugeler, O.; Neumann, A.; Anders, W.; Knobloch, J. Adapting TESLA technology for future cw light sources using HoBiCaT. Rev. Sci. Instrum. 2010, 81, 074701. [Google Scholar] [CrossRef] [PubMed]
- Aull, S.; Ebrahimi, O.; Karakas, N.; Knobloch, J.; Kugeler, O.; Treimer, W. Suppressed Meissner-effect in Niobium: Visualized with polarized neutron radiography. J. Phys. Conf. Ser. 2012, 340, 012001. [Google Scholar] [CrossRef]
- Krzyzagorski, M. “Neutronenradiographien von Gefangenen Magnetfeldern in Polykristallinen Niobproben” (Neutron Radiographs of Trapped Magnetic Fields in Polycrystalline Niobium Samples). Bachelor’s Thesis, University of Applied Sciences, Berlin, Germany, 2016. [Google Scholar]
- Treimer, W.; Hilger, A.; Kardjilov, N.; Strobl, M. Review about old and new imaging signals for neutron computerized tomography. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005, 542, 367–375. [Google Scholar] [CrossRef]
- Kardjilov, N.; Manke, I.; Strobl, M.; Hilger, A.; Treimer, W.; Meissner, M.; Krist, T.; Banhart, J. Three-dimensional imaging of magnetic fields with polarized neutrons. Nat. Phys. 2008, 4, 399–403. [Google Scholar] [CrossRef] [Green Version]
- Schulz, M.; Neubauer, A.; Masalovich, S.; Muehlbauer, M.; Calzada, E.; Schillinger, B.; Pfeiderer, C.; Böni, P. Towards a tomographic reconstruction of neutron depolarization data. J. Phys. Conf. Ser. 2010, 211, 012025. [Google Scholar] [CrossRef]
- Treimer, W.; Ebrahimi, O.; Karakas, N.; Prozorov, R. Polarized neutron imaging and three-dimensional calculation of magnetic flux trapping in bulk of superconductors. Phys. Rev. B 2012, 85, 184522. [Google Scholar] [CrossRef] [Green Version]
- Treimer, W.; Ebrahimi, O.; Karakas, N. Observation of partial Meissner effect and flux pinning in superconducting lead containing non-superconducting parts. Appl. Phys. Lett. 2012, 101, 162603-1–162603-4. [Google Scholar] [CrossRef]
- Treimer, W. Radiography and tomography with polarized neutrons. J. Magn. Magn. Mater. 2014, 350, 188–198. [Google Scholar] [CrossRef]
- Valsecchi, J.; White, J.S.; Bartowiak, M.; Treimer, W.; Kim, Y.; Lee, A.W.; Gokhfeld, D.M.; Hari, R.P.; Morgano, M.; Strobl, M.; et al. Visualization of compensating currents in type-II/1 superconductor via high field cooling. Appl. Phys. Lett. 2020, 116, 192602. [Google Scholar] [CrossRef]
- Treimer, W. Handbook of Advanced Nondestructive Evaluation; Chapter 34 “Neutron Radiography and Tomography”; Springer International Publishing: Cham, Switzerland, 2019; pp. 1217–1299. [Google Scholar]
- Treimer, W.; Ebrahimi, O.; Karakas, N. Imaging of quantum mechanical effects in superconductors by means of polarized neutron radiography. Phys. Procedia 2013, 43, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Mezei, F. Neutron spin echo: A new concept in polarized thermal neutron techniques. Z. Phys. Phys. A Hadron. Nucl. 1972, 255, 146–160. [Google Scholar] [CrossRef]
- Badurek, G. NESY Winterschool 2007. Available online: http://planner2011.unileoben.ac.at/fileadmin/shares/planner2011/docs/private/29-Badurek.pdf (accessed on 20 March 2021).
- Schärpf, O. Available online: http://host-82-135-31-182.customer.m-online.net/neutronpol.pdf (accessed on 20 March 2021).
- NIST ‘Neutron Scattering Length and Cross Sections’. Available online: https://physics.nist.gov/cuu/Constants/index.html (accessed on 20 March 2021).
- NIST Center for Neutron Research. Available online: https://ncnr.nist.gov/resources/n-lengths/elements/fe.html (accessed on 20 March 2021).
- Junginger, T.; Abidi, S.H.; Maffett, R.D.; Buck, T.; Dehn, M.H.; Gheidi, S.; Kiefl, R.; Kolb, P.; Storey, D.; Thoeng, E.; et al. Field of first magnetic flux entry and pinning strength of superconductors for rf application measured with muon spin rotation. Phys. Rev. Accel. Beams 2018, 21, 032002. [Google Scholar] [CrossRef] [Green Version]
- Treimer, W.; Ebrahimi, O.; Karakas, N.; Seidl, S.O. PONTO—An instrument for imaging with polarized neutrons. Nucl. Instr. Methods Phys. Res. A 2011, 651, 53–56. [Google Scholar] [CrossRef]
- W. R. Hendee and E. R. Ritenour, ‘Medical Imaging Physics’, chapter 18, p 456, Mosby Year Book, 3rd.edition (1992).
- Schelten, J.; Ullmaier, H.; Lippmann, G. Local magnetic field distributions in superconducting niobium at 4.2 k by neutron diffraction. Local magnetic field distributions in superconducting niobium at 4.2 K by neutron diffraction. Z. Phys. A Hadron. Nucl. 1972, 253, 219–231. [Google Scholar] [CrossRef]
- Weber, H.W.; Schelten, J.; Lippmann, G. Microscopic Magnetic Field Distribution in Superconducting Niobium Single Crystals in the ‘Dirty Limit’. Phys. Status Solidi 1973, 57, 515–522. [Google Scholar] [CrossRef]
- Schelten, J.; Ullmaier, H.; Lippmann, G.; Schmatz, W. Low Temperature Physics-LT 13; Timmerhaus, K.D., O’Sullivan, W.J., Hammel, E.F., Eds.; Springer: Boston, MA, USA, 1974; pp. 54–63. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Treimer, W.; Junginger, T.; Kugeler, O. Study of Possible Frequency Dependence of Small AC Fields on Magnetic Flux Trapping in Niobium by Polarized Neutron Imaging. Appl. Sci. 2021, 11, 6308. https://doi.org/10.3390/app11146308
Treimer W, Junginger T, Kugeler O. Study of Possible Frequency Dependence of Small AC Fields on Magnetic Flux Trapping in Niobium by Polarized Neutron Imaging. Applied Sciences. 2021; 11(14):6308. https://doi.org/10.3390/app11146308
Chicago/Turabian StyleTreimer, Wolfgang, Tobias Junginger, and Oliver Kugeler. 2021. "Study of Possible Frequency Dependence of Small AC Fields on Magnetic Flux Trapping in Niobium by Polarized Neutron Imaging" Applied Sciences 11, no. 14: 6308. https://doi.org/10.3390/app11146308
APA StyleTreimer, W., Junginger, T., & Kugeler, O. (2021). Study of Possible Frequency Dependence of Small AC Fields on Magnetic Flux Trapping in Niobium by Polarized Neutron Imaging. Applied Sciences, 11(14), 6308. https://doi.org/10.3390/app11146308