Gravity Analysis for Subsurface Characterization and Depth Estimation of Muda River Basin, Kedah, Peninsular Malaysia
Abstract
:1. Introduction
2. General Geology
3. Materials and Methods
3.1. Gravity Anomaly Separation
3.2. Total Horizontal Derivative Analysis
3.3. 3D Euler Deconvolution
3.4. Power Spectrum Analysis
4. Results and Discussion
4.1. Qualitative Interpretation
4.1.1. Complete Bouguer Gravity Anomaly Map
4.1.2. Regional CBA Anomaly Map
4.1.3. Residual CBA Anomaly Map
4.1.4. THD Anomaly Map
4.2. Quantitative Interpretation
4.2.1. Euler Deconvolution
4.2.2. Radially Power Spectrum Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Husain, M.R.; Ishak, A.M.; Redzuan, N.; Kalken, T.V.; Brown, K. Malaysian national water balance system (NAWABS) for improved river basin management: Case study in the Muda River basin. In Proceedings of the 37th IAHR World Congress, Kuala Lumpur, Malaysia, 13–18 August 2017. [Google Scholar]
- Lee, K.F. A Background Study: Economic Benefits of the Muda Water Catchment; World Wide Fund for Nature (Formerly World Wildlife Fund): Petaling Jaya, Malaysia, 2009. [Google Scholar]
- Zhang, D.; Tan, M.L.; Dawood, S.R.S.; Samat, N.; Chang, C.K.; Roy, R.; Tew, Y.L.; Mahamud, M.A. Comparison of NCEP-CFSR and CMADS for hydrological modelling using SWAT in the Muda River Basin, Malaysia. Water 2020, 12, 3288. [Google Scholar] [CrossRef]
- Ghani, A.A.; Ali, R.; Zakaria, N.A.; Hasan, Z.A.; Chang, C.K.; Ahamad, M.S.S. A temporal change study of the Muda River system over 22 years. Int. J. River Basin Manag. 2010, 8, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Kamaruzzaman, M.Y.; Zakariah, M.N.A.; Fudholi, A. Regional gravity study of Perak, Malaysia using satellite acquired data. ARPN J. Eng. Appl. Sci. 2020, 15, 1988–1993. [Google Scholar]
- Samsudin, A.R. Geofizik—Konsep and Penggunaan; Dewan Bahasa dan Pustaka: Kuala Lumpur, Malaysia, 1990. [Google Scholar]
- Jamil, H.H.; Hassan, W.F.W.; Tan, M.M. Pengaruh jenis batuan sekitar terhadap taburan Pb dalam sedimen muara Sungai Merbok, Kedah. Bull. Geol. Soc. Malays. 2004, 48, 7–11. [Google Scholar] [CrossRef]
- Burton, C.K. The Mahang formation: A mid-palaezoic euxinic facies from Malaya, with notes on its conditions of deposition and palaeogeography. Geol. Mijnb. 1967, 46, 167–187. [Google Scholar]
- Harun, Z.; Jasin, B.; Mohsin, N.; Azami, A. Thrust in the Semanggol Formation, Kuala Ketil, Kedah. Bull. Geol. Soc. Malays. 2009, 55, 61–66. [Google Scholar] [CrossRef]
- Foo, K.Y. Geology and Mineral Resources of the Taiping-Kuala Kangsar Area, Perak Darul Ridzuan; Geological Survey Headquarters: Kuala Lumpur, Malaysia, 1990. [Google Scholar]
- Sajid, Z.; Ismail, M.S.; Zakariah, M.N.A.; Tsegab, H.; Vintaned, J.A.G.; Hanif, T.; Ahmed, N. Impact of paleosalinity, paleoredox, paleoproductivity/preservation on the organic matter enrichment in black shales from Triassic turbidites of Semanggol basin, Peninsular Malaysia. Minerals 2020, 10, 915. [Google Scholar] [CrossRef]
- Lee, C.P.; Leman, M.S.; Hassan, K.; Nasib, B.M.; Karim, R. Stratigraphic Lexicon of Malaysia; Geological Society of Malaysia: Kuala Lumpur, Malaysia, 2004. [Google Scholar]
- Koike, T. Triassic Conodont from Kedah and Pahang, Malaysia. Geol. Palaeontol. Southeast Asia 1973, 12, 91–113. [Google Scholar]
- Metcalfe, I. Permian and early Triassic conodonts from northwest Peninsular Malaysia. Bull. Geol. Soc. Malays. 1981, 14, 119–126. [Google Scholar] [CrossRef]
- Koike, T. Triassic Conodont biostratigraphy in Kedah, West Malaysia. Geol. Palaeontol. Southeast Asia 1982, 23, 9–51. [Google Scholar]
- Metcalfe, I. Lower and middle Triassic conodonts from the Jerus Limestone, Pahang, Peninsular Malaysia. J. Southeast Asian Earth Sci. 1990, 4, 141–146. [Google Scholar] [CrossRef]
- Metcalfe, I. Upper Triassic conodonts from the Kodiang Limestone, Kedah, Peninsular Malaysia. J. Southeast Asian Earth Sci. 1992, 7, 131–138. [Google Scholar] [CrossRef]
- Harun, Z.; Jasin, B. Implications of the Bok Bak Fault movements on the structure and lithostratigraphy of the Pokok Sena area. In Proceedings of the Ninth Regional Congress on Geology, Mineral and Energy Resources of Southeast Asia—GEOSEA ’98, Kuala Lumpur, Malaysia, 17–19 August 1998; pp. 145–153. [Google Scholar]
- Shuib, M.K. Major Fault. In Geology of Peninsular Malaysia; Hutchison, C.S., Tan, D.N.K., Eds.; Geological Society of Malaysia; Universiti Malaya: Kuala Lumpur, Malaysia, 2009; pp. 249–269. [Google Scholar]
- Raj, J.K. A reappraisal of the Bok Bak fault zone. Warta Geologi 1982, 8, 35–41. [Google Scholar]
- Abdullah, I.; Jantan, A.; Jasin, B.; Samsudin, A.R.; Said, U. Amount of displacement along the Bok Bak Fault: Estimation by using lithofacies equivalence. Warta Geologi 1989, 15, 255–262. [Google Scholar]
- Burley, A.J.; Othman, J. A gravity survey of Perlis, Kedah and Penang. Bull. Geol. Soc. Malays. 1990, 26, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Jasin, B.; Harun, Z. Radiolarian biostratigraphy of Peninsular Malaysia—An update. Bull. Geol. Soc. Malays. 2011, 57, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Dobrin, M.B.; Savit, C.H. Introduction to Geophysical Prospecting; McGraw-Hill: New York, NY, USA, 1960; Volume 4. [Google Scholar]
- Harrison, J.C.; Dickinson, M. Fourier transform methods in local gravity modeling. Bull. Geod. 1989, 63, 149–166. [Google Scholar] [CrossRef]
- Bournas, N.; Galdeano, A.; Hamoudi, M.; Baker, H. Interpretation of the aeromagnetic map of Eastern Hoggar (Algeria) using the Euler deconvolution, analytic signal and local wavenumber methods. J. Afr. Earth Sci. 2003, 37, 191–205. [Google Scholar] [CrossRef]
- Chennouf, T.; Khattach, D.; Milhi, A.; Andrieux, P.; Keating, P. Major structural trends in northeastern Morocco: The contribution of gravimetry. Comptes Rendus Geosci. 2007, 339, 383–395. [Google Scholar] [CrossRef]
- Li, C.-F.; Zhou, Z.; Hao, H.; Chen, H.; Wang, J.; Chen, B.; Wu, J. Late Mesozoic tectonic structure and evolution along the present-day northeastern South China Sea continental margin. J. Asian Earth Sci. 2008, 31, 546–561. [Google Scholar] [CrossRef]
- Saheel, A.S.; Samsudin, A.R.; Hamzah, U. Mapping of faults in the Libyan Sirte basin by magnetic surveys. Sains Malays. 2011, 40, 853–864. [Google Scholar]
- Bahrudin, N.F.D.; Hamzah, U. Pencirian sesar-sesar major di sekitar semenanjung Malaysia berdasarkan teknik satelit graviti. J. Teknol. 2018, 80, 113–122. [Google Scholar] [CrossRef]
- Thompson, D.T. EULDPH: A new technique for making computer-assisted depth estimates from magnetic data. Geophysics 1982, 47, 1–129. [Google Scholar] [CrossRef]
- Reid, A.B.; Allsop, J.M.; Granser, H.; Millett, A.J.; Somerton, I.W. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 1990, 55, 10–131. [Google Scholar] [CrossRef] [Green Version]
- Fairhead, J.D.; Bennett, K.J.; Gordon, D.R.H.; Huang, D. Euler: Beyond the “Black Box”. In Proceedings of the 1994 SEG Annual Meeting, Los Angeles, CA, USA, 23–27 October 1994. [Google Scholar]
- Huang, D.; Gubbins, D.; Clark, R.; Whaler, K.A. Combined Study of Euler’s Homogeneity Equation for Gravity and Magnetic Field. In Proceedings of the 57th EAGE Conference and Exhibition, Glasgow, UK, 29 May–2 June 1995. [Google Scholar]
- Olokoba, S.O.; Magaji, Y. Analysis of high-resolution aeromagnetic data over parts of Sokoto basin, north-west Nigeria. Platform J. Eng. 2020, 4, 14–30. [Google Scholar]
- Chenrai, P.; Meyers, J.; Charusiri, P. Euler deconvolution technique for gravity survey. J. Appl. Sci. Res. 2010, 6, 1891–1897. [Google Scholar]
- Spector, A.; Grant, F.S. Statistical models for interpreting aeromagnetic data. Geophysics 1970, 35, 197–359. [Google Scholar] [CrossRef]
- Igwesi, D.I.; Umego, M.N. Interpretation of aeromagnetic anomalies over some parts of lower Benue trough using spectral analysis technique. Int. J. Sci. Technol. Res. 2013, 2, 153–165. [Google Scholar]
- Maus, S.; Dimri, V. Depth estimation from the scaling power spectrum of potential fields? Geophys. J. Int. 1996, 124, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, N. Montaj Gravity & Terrain Correction: Gravity Data Processing Extension for Oasis Montaj v7.1; Geosoft: Toronto, ON, Canada, 2010. [Google Scholar]
- Mangkhemthong, N.; Morley, C.K.; Kanthiya, S.; Chaisri, S. Geological model and development of the Cenozoic Wiang Pa Pao basin, Chiang Rai provice, northern Thailand, based on gravity data modelling and surface structural interpretation. Tectonophysics 2020, 786, 228454. [Google Scholar] [CrossRef]
- Loke, M.H.; Lee, C.Y.; Klinken, G.V. Interpretation of regional gravity and magnetic data in Peninsular Malaysia. Bull. Geol. Soc. Malays. 1983, 16, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Ooi, W.C.; Zakariah, M.N.A.; Choong, C.M.; Rafek, A.G.M.; Mohamed, M.A. Structures & basin setting of Semanggol Formation, Bukit Merah using gravity data. In Proceedings of the Asia International Multidisciplinary Conference, Johor, Malaysia, 12–13 May 2018; pp. 247–254. [Google Scholar]
- Ade-Hall, J.M.; Reynolds, P.H.; Dagley, P.; Mussett, A.E.; Hubbard, T.P.; Klitzsch, E. Geophysical studies of north African Cenozoic volcanic areas I: Haruj Assuad, Libya. Can. J. Earth Sci. 1974, 11, 998–1006. [Google Scholar] [CrossRef]
- Saheel, A.S.; Samsudin, A.R.; Hamzah, U. Interpretation of the gravity and magnetic anomalies of the Ajdabiya Trough in the Sirt basin, Libya. Eur. J. Sci. Res. 2010, 43, 316–330. [Google Scholar]
- Bottelin, P.; Dufrechou, G.; Seoane, L.; Llubes, M.; Monod, B. Geophysical methods for mapping Quaternary sediment thickness: Application to the Saint-Lary basin (French Pyrenees). Comptes Rendus Geosci. 2019, 351, 407–419. [Google Scholar] [CrossRef]
- Azman, A.I.; Talib, J.A.; Sokiman, M.S. Lineament study of the Semanggol Formation and adjacent areas from Landsat 8 image. Bull. Geol. Soc. Malays. 2018, 65, 119–124. [Google Scholar] [CrossRef]
Source | Gravity S.I. |
---|---|
Sphere | 2.0 |
Horizontal | 1.0 |
Fault (small step) | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakariah, M.N.A.; Roslan, N.; Sulaiman, N.; Lee, S.C.H.; Hamzah, U.; Noh, K.A.M.; Lestari, W. Gravity Analysis for Subsurface Characterization and Depth Estimation of Muda River Basin, Kedah, Peninsular Malaysia. Appl. Sci. 2021, 11, 6363. https://doi.org/10.3390/app11146363
Zakariah MNA, Roslan N, Sulaiman N, Lee SCH, Hamzah U, Noh KAM, Lestari W. Gravity Analysis for Subsurface Characterization and Depth Estimation of Muda River Basin, Kedah, Peninsular Malaysia. Applied Sciences. 2021; 11(14):6363. https://doi.org/10.3390/app11146363
Chicago/Turabian StyleZakariah, Muhammad Noor Amin, Norsyafina Roslan, Norasiah Sulaiman, Sean Cheong Heng Lee, Umar Hamzah, Khairul Arifin Mohd Noh, and Wien Lestari. 2021. "Gravity Analysis for Subsurface Characterization and Depth Estimation of Muda River Basin, Kedah, Peninsular Malaysia" Applied Sciences 11, no. 14: 6363. https://doi.org/10.3390/app11146363
APA StyleZakariah, M. N. A., Roslan, N., Sulaiman, N., Lee, S. C. H., Hamzah, U., Noh, K. A. M., & Lestari, W. (2021). Gravity Analysis for Subsurface Characterization and Depth Estimation of Muda River Basin, Kedah, Peninsular Malaysia. Applied Sciences, 11(14), 6363. https://doi.org/10.3390/app11146363