Comparison of Volatiles and Chemical Composition of Traditional and Non-Traditional Honey Available on the Polish Market
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Water Content
2.2.2. Electrical Conductivity (EC)
2.2.3. Acidity
2.2.4. Hydroxymethylfurfural (HMF) Content
2.2.5. Color Analysis
2.2.6. Sugar Analysis
2.2.7. Total Phenolic Content (TPC)
2.2.8. Determination of Antioxidant Activity
2.2.9. GC-MS Determination of Volatile Compounds in Honeys
2.3. Statistical Analysis
3. Results
3.1. Physicochemical and Color Analysis
3.2. Sugar Content
3.3. Antioxidant Properties of Honey
3.4. Volatile Compounds Concentration
4. Discussion
4.1. Physicochemical Analysis and Detemination of Color
4.2. Sugar Content
4.3. Antioxidant Properties
4.4. Volatile Compounds Profile
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Union. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. Off. J. Eur. Communities 2011, L 304, 18–63. [Google Scholar]
- Republic of Poland. Amending Regulation on Detailed Re-Quirements for the Commercial Quality of Honey. In Regulation of the Minister of Agriculture and Rural Development of 29 May 2015. Polish Journal of Laws 2015, pos. 850; Ministry of Agriculture and Rural Development: Warsaw, Poland, 2015. [Google Scholar]
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, B.A.; Alshumrani, E.S.; Bin Saeed, M.S.; Rawas, G.M.; Alharthi, N.T.; Baeshen, M.N.; Helmi, N.M.; Alam, M.Z.; Suhail, M. Analysis of sugar composition and pesticides using HPLC and GC–MS techniques in honey samples collected from Saudi Arabian markets. Saudi J. Biol. Sci. 2020, 27, 3720–3726. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-R.; Ye, Y.-L.; Lin, T.-Y.; Wang, Y.-W.; Peng, C.-C. Effect of floral sources on the antioxidant, antimicrobial, and anti-inflammatory activities of honeys in Taiwan. Food Chem. 2013, 139, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Yap, S.; Chin, N. Identification of distinctive properties of common Malaysian honeys. Mater. Today Proc. 2021, 42, 115–118. [Google Scholar] [CrossRef]
- Machado, A.; Miguel, M.G.; Vilas-Boas, M.; Figueiredo, A.C. Honey Volatiles as a Fingerprint for Botanical Origin—A Review on Their Occurrence on Monofloral Honeys. Molecules 2020, 25, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Honey Commision. Available online: http://www.bee-hexagon.net/en/network.htm (accessed on 10 May 2019).
- Ferreira, I.C.; Aires, E.; Barreira, J.C.; Estevinho, L.M. Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic extract. Food Chem. 2009, 114, 1438–1443. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Tulipani, S.; Díaz, D.; Estevez, Y.; Romandini, S.; Giampieri, F.; Damiani, E.; Astolfi, P.; Bompadre, S.; Battino, M. Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food Chem. Toxicol. 2010, 48, 2490–2499. [Google Scholar] [CrossRef] [PubMed]
- Wilczyńska, A. Effect of filtration on colour, antioxidant activity and total phenolics of honey. LWT Food Sci. Technol. 2014, 57, 767–774. [Google Scholar] [CrossRef]
- European Union. Council Directive 2001/110/EC relating to honey. Off. J. Eur. Communities 2001, 10, 47–52. [Google Scholar]
- Sakač, M.B.; Jovanov, P.; Marić, A.; Pezo, L.; Kevrešan, Ž.S.; Novaković, A.R.; Nedeljković, N.M. Physicochemical properties and mineral content of honey samples from Vojvodina (Republic of Serbia). Food Chem. 2019, 276, 15–21. [Google Scholar] [CrossRef]
- Escuredo, O.; Míguez, M.; Fernández-González, M.; Seijo, M.C. Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem. 2013, 138, 851–856. [Google Scholar] [CrossRef]
- Popek, S.; Halagarda, M.; Kursa, K. A new model to identify botanical origin of Polish honeys based on the physicochemical parameters and chemometric analysis. LWT Food Sci. Technol. 2017, 77, 482–487. [Google Scholar] [CrossRef]
- Habib, H.M.; Al Meqbali, F.T.; Kamal, H.; Souka, U.D.; Ibrahim, W. Physicochemical and biochemical properties of honeys from arid regions. Food Chem. 2014, 153, 35–43. [Google Scholar] [CrossRef]
- El Sohaimy, S.A.; Masry, S.H.D.; Shehata, M.G. Physicochemical characteristics of honey from different origins. Ann. Agric. Sci. 2015, 60, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Do Nascimento, K.S.; Sattler, J.A.G.; Macedo, L.F.L.; González, C.V.S.; de Melo, I.L.P.; da Silva Araújo, E.; Granato, D.; Sattler, A.; de Almeida-Muradian, L.B. Phenolic compounds, antioxidant capacity and physicochemical properties of Brazilian Apis mellifera honeys. LWT Food Sci. Technol. 2018, 91, 85–94. [Google Scholar] [CrossRef]
- Kavanagh, S.; Gunnoo, J.; Passos, T.M.; Stout, J.C.; White, B. Physicochemical properties and phenolic content of honey from different floral origins and from rural versus urban landscapes. Food Chem. 2019, 272, 66–75. [Google Scholar] [CrossRef]
- Piazza, M.G.; Oddo, L.P. Bibliographical review of the main European unifloral honeys. Apidologie 2004, 35, 94. [Google Scholar] [CrossRef] [Green Version]
- Devillers, J.; Morlot, M.; Pham-Delègue, M.; Doré, J. Classification of monofloral honeys based on their quality control data. Food Chem. 2004, 86, 305–312. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Venskutonis, P.; Čeksterytė, V. Carbohydrate composition and electrical conductivity of different origin honeys from Lithuania. LWT Food Sci. Technol. 2010, 43, 801–807. [Google Scholar] [CrossRef]
- Can, Z.; Yiladiz, O.; Sahin, H.; Turumtay, E.A.; Silici, S.; Koayli, S. An investigation of Turkich honeys: Their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chem. 2015, 180, 133–141. [Google Scholar] [CrossRef]
- Oroian, M.; Rapciuc, S. Honey authentication based on physicochemical parameters and phenolic compounds. Comput. Electron. Agric. 2017, 138, 148–156. [Google Scholar] [CrossRef]
- Ruoff, K.; Luginbühl, W.; Kilchenmann, V.; Bosset, J.O.; Von Der Ohe, K.; Von Der Ohe, W.; Amadò, R. Authentication of the botanical origin of honey using profiles of classical measurands and discriminant analysis. Apidologie 2007, 38, 438–452. [Google Scholar] [CrossRef]
- Gela, A.; Hora, Z.A.; Kebebe, D.; Gebresilassie, A. Physico-Chemical Characteristics of Honey Produced by Stingless Bees (Meliponula Beccarii) from West Showa Zone of Oromia Region, Ethiopia. Heliyon 2021, 7, e05875. [Google Scholar] [CrossRef]
- De Beer, T.; Otto, M.; Pretoruis, B.; Schönfeldt, H.C. Monitoring the quality of honey: South African case study. Food Chem. 2021, 343, 128527. [Google Scholar] [CrossRef]
- Tigistu, T.; Worku, Z.; Mohammed, A. Evaluation of the physicochemical properties of honey produced in Doyogena and Kachabira Districts of Kembata Tambaro zone, Southern Ethiopia. Heliyon 2021, 7, e06803. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Al-Amri, A.; Al-Hadhrami, A.; Al-Belushi, S. Color, flavonoids, phenolics and antioxidants of Omani honey. Heliyon 2018, 4, e00874. [Google Scholar] [CrossRef] [Green Version]
- Amir, Y.; Yesli, A.; Bengana, M.; Sadoudi, R.; Amrouche, T. Physico-Chemical and Microbiological Assessment of Honey from Algeria. Electron. J. Environ. Agric. Food Chem. 2010, 9, 1485–1494. [Google Scholar]
- Alves, A.; Ramos, A.; Gonçalves, M.; Bernardo, M.; Mendes, B. Antioxidant activity, quality parameters and mineral content of Portuguese monofloral honeys. J. Food Compos. Anal. 2013, 30, 130–138. [Google Scholar] [CrossRef]
- Radovic, B.; Careri, M.; Mangia, A.; Musci, M.; Gerboles, M.; Anklam, E. Contribution of dynamic headspace GC–MS analysis of aroma compounds to authenticity testing of honey. Food Chem. 2001, 72, 511–520. [Google Scholar] [CrossRef]
- Innocenzi, P.J.; Hall, D.R.; Cross, J.V. Components of Male Aggregation Pheromone of Strawberry Blossom Weevil, Anthonomus rubi Herbst. (Coleoptera: Curculionidae). J. Chem. Ecol. 2001, 27, 1203–1218. [Google Scholar] [CrossRef] [PubMed]
- Al-Dalali, S.; Zheng, F.; Sun, B.; Chen, F. Comparison of Aroma Profiles of Traditional and Modern Zhenjiang Aromatic Vinegars and Their Changes During the Vinegar Aging by SPME-GC-MS and GC-O. Food Anal. Methods 2018, 12, 544–557. [Google Scholar] [CrossRef]
- Guyot, C.; Bouseta, A.; Scheirman, V.; Collin, S. Floral Origin Markers of Chestnut and Lime Tree Honeys. J. Agric. Food Chem. 1998, 46, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Wolski, T.; Tambor, K.; Rybak-Chmielewska, H.; Kędzia, B. Identification of honey volatile components by solid phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS). J. Apic. Sci. 2006, 50, 115–126. [Google Scholar]
- Pita-Calvo, C.; Vázquez, M. Differences between honeydew and blossom honeys: A review. Trends Food Sci. Technol. 2017, 59, 79–87. [Google Scholar] [CrossRef]
Traditional Honey | Non-Traditional Honey | |||||
---|---|---|---|---|---|---|
H1 | H2 | H3 | H4 | H5 | H6 | |
Rape honey | Lime honey | Meadow and marsh honey | Lime honey | Buckwheat honey | Honeydew honey from coniferous honeydew | |
Moisture (%) | 16.80 c ± 0.14 | 15.40 a ± 0.14 | 16.35 b ± 0.07 | 17.80 d ± 0.14 | 18.15 d ± 0.21 | 15.35 a ± 0.21 |
Electrical conductivity (mS/cm) | 0.17 a ± 0.00 | 0.63 b ± 0.01 | 0.70 f ± 0.01 | 0.35 e ± 0.00 | 0.24 c ± 0.00 | 0.89 d ± 0.00 |
Acidity (meq/kg) | 13.3 a ± 0.6 | 13.0 a ± 1.7 | 30.7 b ± 1.2 | 8.3 c ± 0.6 | 24.3 d ± 0.6 | 31.3 b ± 1.5 |
pH | 3.55 b ± 0.00 | 4.49 c ± 0.08 | 2.95 c ± 0.03 | 3.37 a ± 0.03 | 3.28 a ± 0.01 | 3.09 d ± 0.02 |
HMF (mg/kg) | 0.7 a ± 0.3 | 0.4 a ± 0.2 | 4.2 b ± 0.2 | 12.7 c ± 0.8 | 11.8 c ± 2.3 | 4.5 b ± 0.8 |
Color (mm Pfund) | 5.2 a ± 2.0 | 37.2 b ± 2.5 | 73.7 d ± 0.8 | 5.6 a ± 1.9 | 105.4 e ± 2.8 | 60.0 c ± 0.4 |
Color | Water white | Extra light amber | Light amber | Water white | Amber | Light amber |
Traditional Honey | Non-Traditional Honey | |||||
---|---|---|---|---|---|---|
H1 | H2 | H3 | H4 | H5 | H6 | |
Sugars (g/100 g) | Rape honey | Lime honey | Meadow and marsh honey | Lime honey | Buckwheat honey | Honeydew honey from coniferous honeydew |
Glucose | 31.52 a,b ± 5.05 | 37.06 b ± 2.54 | 35.21 a,b ± 1.95 | 26.26 a ± 2.39 | 28.58 a,b ± 5.41 | 33.06 a,b ± 2.68 |
Fructose | 32.46 b ± 3.00 | 36.87 a ± 2.81 | 36.20 a ± 1.42 | 36.79 a ± 0.20 | 37.50 a ± 0.84 | 30.18 a ± 2.76 |
Glucose + fructose | 63.98 a ± 7.83 | 73.93 a ± 5.12 | 71.41 a ± 1.62 | 63.05 a ± 2.58 | 66.08 a ± 5.94 | 63.24 a ± 4.87 |
Fructose/glucose ratio | 1.04 a,b,c ± 0.10 | 1.00 a,b ± 0.04 | 1.03 a,b ± 0.09 | 1.41 c ± 0.13 | 1.34 b,c ± 0.27 | 0.91 a ± 0.07 |
Glucose/water ratio | 1.88 a,b ± 0.04 | 2.41 a ± 0.12 | 2.15 a ± 0.10 | 1.48 b ± 0.05 | 1.58 b ± 0.02 | 2.15 a ± 0.06 |
Traditional Honey | Non-Traditional Honey | |||||
---|---|---|---|---|---|---|
H1 | H2 | H3 | H4 | H5 | H6 | |
Rape honey | Lime honey | Meadow and marsh honey | Lime honey | Buckwheat honey | Honeydew honey from coniferous honeydew | |
Total phenolic (mg GAE/100 g) | 14.3 a ± 0.4 | 36.2 b,c ± 0.8 | 34.2 b ± 0.8 | 13.7 a ± 0.3 | 51.2 d ± 5.1 | 30.9 c ± 2.0 |
ABTS [%] | 15.1 b ± 1.5 | 54.9 a ± 2.8 | 52.5 a ± 3.3 | 15.2 b ± 0.0 | 45.9 c ± 0.9 | 60.7 a ± 2.3 |
Traditional Honey | Non-Traditional Honey | |||||
---|---|---|---|---|---|---|
H1 | H2 | H3 | H4 | H5 | H6 | |
Volatile group | Rape honey | Lime honey | Meadow and marsh honey | Lime honey | Buckwheat honey | Honeydew honey from coniferous honeydew |
Acids | 1.40 b ± 0.03 b (3) | nd | nd | nd | 39.95 ± 1.69 a (6) | nd |
Alcohols | 6.44 ± 0.8 d (13) | 20.40 ± 1.88 b (12) | 23.85 ± 1.28 b (16) | 12.07 ± 1.04 c (19) | 13.71 ± 1.17 c (14) | 38.59 ± 1.97 a (15) |
Aldehydes | 11.40 ± 1.18 d (8) | 30.70 ± 2.60 b (10) | 33.41 ± 1.91 b (8) | 20.39 ± 1.50 c (12) | 90.72 ± 3.16 a (7) | nd |
Esters | 1.59 ± 0.13 e (3) | 7.08 ± 0.61 c (1) | 16.86 ± 0.63 b (2) | 3.80 ± 0.55 d (2) | 0.27 ± 0.03 f (1) | 25.57 ± 1.53 a (5) |
Hydrocarbons | 1.00 ± 0.21 e (2) | 59.73 ± 2.99 a (8) | 13.02 ± 0.67 c (8) | 18.69 ± 1.18 b (9) | 0.04 ± 0.02 f (1) | 6.39 ± 0.42 d (3) |
Ketones | 12.46 ± 1.0 d (19) | 50.38 ± 2.72 a (10) | 32.43 ± 2.73 b (19) | 7.39 ± 0.46 e (11) | 30.79 ± 3.59 b (24) | 19.51 ± 1.96 c (9) |
Terpenes | 3.39 ± 0.38 d (3) | 11.11 ± 1.37 b (9) | 23.65 ± 1.82 a (5) | 4.57 ± 0.36 c (5) | 2.94 ± 0.33 e (3) | 2.91 ± 0.05 e (2) |
Others | 1.84 ± 0.39 e (2) | 5.54 ± 0.55 d (5) | 25.30 ± 1.53 a (6) | 6.17 ± 0.82 d (9) | 21.21 ± 0.97 b (5) | 13.10 ± 1.16 c (6) |
Sum | 39.52 ± 3.04 e (53) | 195.17 ± 2.90 a (55) | 170.58 ± 2.28 b (64) | 73.20 ± 1.60 d (67) | 199.62 ± 6.40 a (61) | 106.06 ± 0.45 c (40) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derewiaka, D.; Majewska, E.; Kuzak, K.; Szadkowska, D. Comparison of Volatiles and Chemical Composition of Traditional and Non-Traditional Honey Available on the Polish Market. Appl. Sci. 2021, 11, 6371. https://doi.org/10.3390/app11146371
Derewiaka D, Majewska E, Kuzak K, Szadkowska D. Comparison of Volatiles and Chemical Composition of Traditional and Non-Traditional Honey Available on the Polish Market. Applied Sciences. 2021; 11(14):6371. https://doi.org/10.3390/app11146371
Chicago/Turabian StyleDerewiaka, Dorota, Ewa Majewska, Katarzyna Kuzak, and Dominika Szadkowska. 2021. "Comparison of Volatiles and Chemical Composition of Traditional and Non-Traditional Honey Available on the Polish Market" Applied Sciences 11, no. 14: 6371. https://doi.org/10.3390/app11146371
APA StyleDerewiaka, D., Majewska, E., Kuzak, K., & Szadkowska, D. (2021). Comparison of Volatiles and Chemical Composition of Traditional and Non-Traditional Honey Available on the Polish Market. Applied Sciences, 11(14), 6371. https://doi.org/10.3390/app11146371