Possibilities of Using Phyto-Preparations to Increase the Adaptive Capabilities of the Organism of Test Animals in Swimming
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Yeo, H.C.; Övervik-Douki, E.; Hagen, T.; Doniger, S.J.; Chu, D.W.; Brooks, G.A.; Ames, B.N. Chronically and acutely exercised rats: Biomarkers of oxidative stress and endogenous antioxidants. J. Appl. Physiol. 2000, 89, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Bierens, J.J.L.M.; Lunetta, P.; Tipton, M.; Warner, D.S. Physiology Of Drowning: A Review. Physiology 2016, 31, 147–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, M.A.; Horvath, S.M. Influence Of Water Temperature On Oxygen Uptake By Swimming Rats. J. Appl. Physiol. 1964, 19, 1215–1218. [Google Scholar] [CrossRef]
- Kaushik, S.; Kaur, J. Chronic cold exposure affects the antioxidant defense system in various rat tissues. Clin. Chim. Acta 2003, 333, 69–77. [Google Scholar] [CrossRef]
- Spasić, M.B.; Saičić, S.; Buzadžić, B.; Korać, B.; Blagojević, D.; Petrović, V.M. Effect of long-term exposure to cold on the antioxidant defense system in the rat. Free Radic. Biol. Med. 1993, 15, 291–299. [Google Scholar] [CrossRef]
- Yuksel, S.; Dilek, A.; Ozfer, Y. Antioxidative and metabolic responses to extended cold exposure in rats. Acta Biol. Hung. 2008, 59, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, U.; Das, D.; Banerjee, R. Reactive oxygen species: Oxidative damage and pathogenesis. Curr. Sci. 1999, 77, 658–666. [Google Scholar]
- Wei, H.; Zhang, R.; Su, Y.; Bi, Y.; Li, X.; Zhang, X.; Li, J.; Bao, J. Effects of Acute Cold Stress After Long-Term Cold Stimulation on Antioxidant Status, Heat Shock Proteins, Inflammation and Immune Cytokines in Broiler Heart. Front. Physiol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Zhang, X.; Xin, H.; Li, S.; Li, J.; Zhang, R.; Li, X.; Li, J.; Bao, J. Effects of prior cold stimulation on inflammatory and immune regulation in ileum of cold-stressed broilers. Poult. Sci. 2018, 97, 4228–4237. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.; Quintanilha, A.; Brooks, G.; Packer, L. Free radicals and tissue damage produced by exercise. Biochem. Biophys. Res. Commun. 1982, 107, 1198–1205. [Google Scholar] [CrossRef]
- Lubkowska, A.; Dołęgowska, B.; Szyguła, Z.; Bryczkowska, I.; Stańczyk-Dunaj, M.; Sałata, D.; Budkowska, M. Winter-swimming as a building-up body resistance factor inducing adaptive changes in the oxidant/antioxidant status. Scand. J. Clin. Lab. Investig. 2013, 73, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Lubkowska, A.; Dołęgowska, B.; Szyguła, Z. Whole-Body Cryostimulation-Potential Beneficial Treatment for Improving Antioxidant Capacity in Healthy Men-Significance of the Number of Sessions. PLoS ONE 2012, 7, e46352. [Google Scholar] [CrossRef] [Green Version]
- Lubkowska, A.; Bryczkowska, I.; Gutowska, I.; Rotter, I.; Marczuk, N.; Baranowska-Bosiacka, I.; Banfi, G. The Effects of Swimming Training in Cold Water on Antioxidant Enzyme Activity and Lipid Peroxidation in Erythrocytes of Male and Female Aged Rats. Int. J. Environ. Res. Public Health 2019, 16, 647. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Dong, C.; Guan, L.; Wang, Y.; Huang, J.; Wen, X. A metabolic exploration of the protective effect of Ligusticum wallichii on IL-1β-injured mouse chondrocytes. Chin. Med. 2020, 15, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Z.; Wu, P.; Wang, X.; Jin, M.; Liu, S.; Ma, X.; Shi, H. Tetramethylpyrazine Protects Against Early Brain Injury and Inhibits the PERK/Akt Pathway in a Rat Model of Subarachnoid Hemorrhage. Neurochem. Res. 2018, 43, 1650–1659. [Google Scholar] [CrossRef]
- Sumiyoshi, M.; Kimura, Y. Effects of Eleutherococcus senticosus cortex on recovery from the forced swimming test and fatty acid β-oxidation in the liver and skeletal muscle of mice. Nat. Prod. J. 2016, 6, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Bleakney, T.L. Deconstructing an Adaptogen. Holist. Nurs. Pract. 2008, 22, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Adkar, P.P.; Jadhav, P.P.; Ambavade, S.D.; Bhaskar, V.H.; Shelke, T. Adaptogenic Activity of Lyophilized Hydroethanol Extract of Pandanus odoratissimus in Swiss Albino Mice. Int. Sch. Res. Not. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bocharov, E.V.; Ivanova-Smolenskaya, I.A.; Poleshchuk, V.V.; Kucheryanu, V.G.; Il’enko, V.A.; Bocharova, O.A. Therapeutic Efficacy of the Neuroprotective Plant Adaptogen in Neurodegenerative Disease (Parkinson’s Disease as an Example). Bull. Exp. Biol. Med. 2010, 149, 682–684. [Google Scholar] [CrossRef]
- Zhuang, Z.; Wang, Z.-H.; Huang, Y.-Y.; Zheng, Q.; Pan, X.-D. Protective effect and possible mechanisms of ligustrazine isolated from Ligusticum wallichii on nephropathy in rats with diabetes: A preclinical systematic review and meta-analysis. J. Ethnopharmacol. 2020, 252, 112568. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Dai, J.; Li, H.; Li, Y.; Hao, W.; Zhang, Y.; Zhang, Y.; Su, L.; Wei, H. Anti-aging effects exerted by Tetramethylpyrazine enhances self-renewal and neuronal differentiation of rat bMSCs by suppressing NF-kB signaling. Biosci. Rep. 2019, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Wang, Q.; Ren, Y.; Wang, X.; Cheng, H.; Yang, H.; Wang, B. Tetramethylpyrazine protects retinal ganglion cells against H2O2-induced damage via the microRNA-182/mitochondrial pathway. Int. J. Mol. Med. 2019, 44, 503–512. [Google Scholar] [CrossRef] [Green Version]
- Lv, P.; Tong, X.; Peng, Q.; Liu, Y.; Jin, H.; Liu, R.; Sun, W.; Pan, B.; Zheng, L.; Huang, Y. Treatment with the herbal medicine, naoxintong improves the protective effect of high-density lipoproteins on endothelial function in patients with type 2 diabetes. Mol. Med. Rep. 2016, 13, 2007–2016. [Google Scholar] [CrossRef] [Green Version]
- Lewis, W.H.; Zenger, V.E.; Lynch, R.G. No adaptogen response of mice to ginseng and eleutherococcus infusions. J. Ethnopharmacol. 1983, 8, 209–214. [Google Scholar] [CrossRef]
- Gerontakos, S.; Taylor, A.; Avdeeva, A.Y.; Shikova, V.A.; Pozharitskaya, O.N.; Casteleijn, D.; Wardle, J.; Shikov, A.N. Findings of Russian literature on the clinical application of Eleutherococcus senticosus (Rupr. & Maxim.): A narrative review. J. Ethnopharmacol. 2021, 278, 114274. [Google Scholar] [CrossRef] [PubMed]
- Panossian, A.; Seo, E.-J.; Efferth, T. Effects of anti-inflammatory and adaptogenic herbal extracts on gene expression of eicosanoids signaling pathways in isolated brain cells. Phytomedicine 2019, 60, 152881. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Mathiyalagan, R.; Markus, J.; Wang, C.; Singh, P.; Ahn, S.; Farh, M.E.-A.; Yang, D.C.; Abbai, R. Green synthesis of multifunctional silver and gold nanoparticles from the oriental herbal adaptogen: Siberian ginseng. Int. J. Nanomedicine 2016, 11, 3131–3143. [Google Scholar] [CrossRef] [Green Version]
- Smirnova, M.D.; Svirida, O.N.; Vitsenia, M.V.; Kuzmina, A.E.; Lankin, V.Z.; Tikhaze, A.K.; Konovalova, G.N.; Ageev, F.T. Using meldonium to improve the adaptation of patients with cardiovascular disease to the effects of heat and correction of associated oxidative stress. Kardiologiia 2014, 54, 53–59. [Google Scholar] [CrossRef]
- Baulin, S.I.; Rogacheva, S.M.; Afanaseva, S.V.; Zabanova, E.V.; Karagaycheva, Y. V Pharmaceutical Composition for Improving Physical Working Capacity. Bull. Exp. Biol. Med. 2015, 160, 45–48. [Google Scholar] [CrossRef]
- Baulin, S.I.; Rogacheva, S.M.; Afanaseva, S.V. Effects of Drugs on Exercise Performance. Bull. Exp. Biol. Med. 2013, 155, 636–638. [Google Scholar] [CrossRef]
- Zhang, W.; Su, W.; Lin, Q.; He, Y.; Yan, Z.; Wang, Y.; Li, P.; Wu, H.; Liu, H.; Yao, H. Protective effects of Naoxintong capsule alone and in combination with ticagrelor and atorvastatin in rats with Qi deficiency and blood stasis syndrome. Pharm. Biol. 2020, 58, 1006–1022. [Google Scholar] [CrossRef]
- Farzanegi, P.; Abbaszadeh, H.; Farokhi, F.; Rahmati-Ahmadabad, S.; Hosseini, S.A.; Abdi, A.; Mazandarani, M.R.; Rezaei, I.; Shokrie, M.; Vizvari, E.; et al. Attenuated Renal and Hepatic Cells Apoptosis Following Swimming Exercise Supplemented with Garlic Extract in Old Rats. Clin. Interv. Aging 2020, 15, 1409–1418. [Google Scholar] [CrossRef]
- Chen, Y.-M.; Huang, C.-C.; Hsiao, C.-Y.; Hu, S.; Wang, I.-L.; Sung, H.-C. Ludwigia octovalvis (Jacq.) raven extract supplementation enhances muscle glycogen content and endurance exercise performance in mice. J. Vet. Med. Sci. 2019, 81, 667–674. [Google Scholar] [CrossRef]
- Suarsana, I.N.; Utama, I.H.; Kardena, I.M. Tempe extract reduces cell damage in the liver and kidneys after intensive physical exercise in rats. Vet. World 2020, 13, 1510–1516. [Google Scholar] [CrossRef]
- Song, X.; Zhou, W.; Chen, C.; Wang, S.; Liang, S. [Study on material base of Ligusticum wallichii for treating brain ischemia and its molecular mechanism based on molecular docking]. China J. Chin. Mater. Med. 2015, 40, 2195–2198. [Google Scholar]
- Wang, J.; Liu, N.; Zhang, F. Tetramethylpyrazine Protects Oxidative Stability and Gelation Property of Rabbit Myofibrillar Proteins. Food Sci. Anim. Resour. 2019, 39, 623–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyauchi-Wakuda, S.; Kagota, S.; Maruyama-Fumoto, K.; Shiokawa, Y.; Yamada, S.; Shinozuka, K. Acanthopanax senticosus Root Extract Exerts Dual Action on Mouse Ileal Smooth Muscle Function, Leading to Modulation of Gastrointestinal Motility. Biol. Pharm. Bull. 2020, 43, 817–822. [Google Scholar] [CrossRef]
- Panossian, A.; Seo, E.-J.; Efferth, T. Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. Phytomedicine 2018, 50, 257–284. [Google Scholar] [CrossRef] [PubMed]
- Gündüz, F.; Sentürk, U.; Kuru, O.; Aktekin, B.; Aktekin, M. The Effect of One Year’s Swimming Exercise on Oxidant Stress and Antioxidant Capacity in Aged Rats. Physiol. Res. 2004, 53, 171–176. [Google Scholar]
- Nonato, L.F.; Rocha-Vieira, E.; Tossige-Gomes, R.; Soares, A.A.; Soares, B.A.; Freitas, D.A.; Oliveira, M.X.; Mendonça, V.A.; Lacerda, A.C.; Massensini, A.R.; et al. Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain. Braz. J. Med. Biol. Res. 2016, 49, e5310. [Google Scholar] [CrossRef] [PubMed]
- Greenblatt, H.K.; Greenblatt, D.J. Meldonium (Mildronate): A Performance-Enhancing Drug? Clin. Pharmacol. Drug Dev. 2016, 5, 167–169. [Google Scholar] [CrossRef]
- Chang, Q.; Miao, X.; Ju, X.; Zhu, L.; Huang, C.; Huang, T.; Zuo, X.; Gao, C. Effects of Pulse Current on Endurance Exercise and Its Anti-Fatigue Properties in the Hepatic Tissue of Trained Rats. PLoS ONE 2013, 8, e75093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seĭfulla, R.D.; Trevisani, K.; Morozov, I.E.; Kondrat’eva, I.I.; Fedina, T.I.; Trevisani, M.; Agaeva, E.N. The action of carnitine derivatives on the work capacity of previously trained animals. Eksp. Klin. Farmakol. 1993, 56, 34–36. [Google Scholar]
- Hughes, D. Comment: Meldonium and the WADA Prohibited List. Aust. Prescr. 2016, 39, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lykhatskyi, P.; Fira, L.; Garlitska, N.; Fira, D.; Soroka, Y.; Lisnychuk, N.; Delibashvili, D. CHANGES OF CYTOLYSIS Indicators in rats’ blood resulted from simultaneous intoxication with tobacco smoke and sodium nitrite after using mildronate. Georgian Med. News 2019, 296, 96–102. [Google Scholar]
- Rabin, O.; Uiba, V.; Miroshnikova, Y.; Zabelin, M.; Samoylov, A.; Karkischenko, V.; Semyonov, S.; Astrelina, T.; Razinkin, S. Meldonium long-term excretion period and pharmacokinetics in blood and urine of healthy athlete volunteers. Drug Test. Anal. 2019, 11, 554–566. [Google Scholar] [CrossRef] [PubMed]
- Chirkova, A.; Petrenko, A.; Vasilyev, P. Testing Meldonium: Assessing Soviet pragmatic alternatives to the randomized controlled trial. Clin. Trials 2021, 18, 269–276. [Google Scholar] [CrossRef]
- Tanashyan, M.M.; Maksimova, M.Y.; Shabalina, A.A.; Fedin, P.A.; Medvedev, R.B.; Bolotova, T.A. Chronic cerebrovascular diseases and neuroprotection: The clinical efficacy of meldonium (Mildronat). Zhurnal Nevrol. i Psikhiatrii im. S.S. Korsakova 2020, 120, 14. [Google Scholar] [CrossRef]
- Liepinsh, E.; Kuka, J.; Svalbe, B.; Vilskersts, R.; Skapare, E.; Cirule, H.; Pugovics, O.; Kalvinsh, I.; Dambrova, M. Effects of Long-Term Mildronate Treatment on Cardiac and Liver Functions in Rats. Basic Clin. Pharmacol. Toxicol. 2009, 105, 387–394. [Google Scholar] [CrossRef]
- Kukes, V.G.; Zhernakova, N.I.; Gorbach, T.V.; Romashchenko, O.V.; Rumbesht, V.V. Efficiency Of Mildronate In Rats Of Different Age With Experimental-Induced Myocardial Ischemia. Ann. Russ. Acad. Med. Sci. 2013, 68, 42–46. [Google Scholar] [CrossRef]
- Demir, D.; Kuru Bektaşoğlu, P.; Koyuncuoğlu, T.; Kandemir, C.; Akakın, D.; Yüksel, M.; Çelikoğlu, E.; Yeğen, B.Ç.; Gürer, B. Neuroprotective effects of mildronate in a rat model of traumatic brain injury. Injury 2019, 50, 1586–1592. [Google Scholar] [CrossRef]
- Sokurenko, L.M.; Savchyna, M.O.; Litus, V.I.; Kaminsky, R.F.; Chaikovsky, Y.B. Rat spinal ganglia in assessment of protective action of antioxidants: A morphological study. Medicina 2017, 53, 316–322. [Google Scholar] [CrossRef]
- Cojocariu, R.; Ciobica, A.; Balmus, I.-M.; Guenne, S.; Trifan, A.; Stanciu, C.; Hrițcu, L.; Lefter, R. Antioxidant Capacity and Behavioral Relevance of a Polyphenolic Extract of Chrysanthellum americanum in a Rat Model of Irritable Bowel Syndrome. Oxid. Med. Cell. Longev. 2019, 2019, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Shi, L.; Liu, S.; Liu, Z.; Song, F.; Sun, Z.; Liu, Z. Mass spectrometry-based urinary metabolomics for the investigation on the mechanism of action of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. leaves against ischemic stroke in rats. J. Ethnopharmacol. 2019, 241, 111969. [Google Scholar] [CrossRef]
- Shakhmatov, I.I.; Bondarchuk, I.A.; Vdovin, V.M.; Alekseeva, O.V.; Kiselev, V.I. Hemostasis changes and their correction by adaptogen. Patol. Fiziol. Eksp. Ter. 2010, 43–46. [Google Scholar]
- Lishmanov, I.B.; Maslov, L.N.; Arbuzov, A.G.; Krylatov, A.V.; Platonov, A.A.; Burkova, V.N.; Kaiumova, E.A. Cardioprotective, inotropic, and anti-arrhythmia properties of a complex adaptogen “Tonizid. Eksp. Klin. Farmakol. 2008, 71, 15–22. [Google Scholar] [PubMed]
- Zengyong, Q.; Jiangwei, M.; Huajin, L. Effect of Ligusticum wallichii Aqueous Extract on Oxidative Injury and Immunity Activity in Myocardial Ischemic Reperfusion Rats. Int. J. Mol. Sci. 2011, 12, 1991–2006. [Google Scholar] [CrossRef] [Green Version]
- Chiou, G.C.; Yan, H.Y.; Lei, X.L.; Li, B.H.; Shen, Z.F. Ocular and cardiovascular pharmacology of tetramethylpyrazine isolated from Ligusticum wallichii Franch. Zhongguo Yao Li Xue Bao 1991, 12, 99–104. [Google Scholar] [PubMed]
- Henkel, R.R.; Wang, R.; Bassett, S.H.; Chen, T.; Liu, N.; Zhu, Y.; Tambi, M.I. Tongkat Ali as a Potential Herbal Supplement for Physically Active Male and Female Seniors-A Pilot Study. Phyther. Res. 2014, 28, 544–550. [Google Scholar] [CrossRef]
- Seo, E.-J.; Klauck, S.M.; Efferth, T.; Panossian, A. Adaptogens in chemobrain (Part III): Antitoxic effects of plant extracts towards cancer chemotherapy-induced toxicity-transcriptome-wide microarray analysis of neuroglia cells. Phytomedicine 2019, 56, 246–260. [Google Scholar] [CrossRef]
SOD (μmol/min g) | GPO (mmol/min g) | AST (mmol/min g) | ALT (mmol/min g) | |||||
---|---|---|---|---|---|---|---|---|
Heart | Liver | Heart | Liver | Heart | Liver | Heart | Liver | |
Control group | 49.2 ± 8.6 | 337 ± 149 | 432 ± 131 | 161 ± 112 | 91.3 ± 36.8 | 115 ± 17.6 | 129 ± 83.8 | 117 ± 51.0 |
0.9% NaCl solution | 43.5 ± 23.7 | 347 ± 103 | 419 ± 109 | 191 ± 132 | 105 ± 58.0 | 119 ± 90.2 | 162 ± 92 | 94.5 ± 56.3 |
Inhibitor of the enzyme gamma-butyrobetaine hydroxylase | 50 ± 17 | 321 ± 134 | 450 ± 93 | 217 ± 107.9 | 109 ± 52 | 105 ± 76 | 154 ± 117 | 107 ± 56 |
Ligusticum wallichii extract | 45.3 ± 16.4 | 350 ± 126 | 405 ± 101 | 232 ± 103 | 106 ± 47.0 | 103 ± 56.3 | 122 ± 93 | 98.3 ± 27.9 |
Eleutherococcus extract | 23.4 ± 5.7 | 385 ± 77.3 | 453 ± 86.7 | 241.5 ± 81.2 | 105 ± 63 | 113 ± 96 | 129 ± 91.9 | 112 ± 98 |
Group | Group Number | SOD | GPO | AST | ALT | ||||
---|---|---|---|---|---|---|---|---|---|
Heart | Liver | Heart | Liver | Heart | Liver | Heart | Liver | ||
Control group | 1 | 71.43% (61.33% ÷ 91.23%) * | 90.62% (84.10% ÷ 103.40%) | 73.61% (63.76% ÷ 92.93%) * | 84.62% (76.55% ÷ 100.43%) | 53.85% (42.70% ÷ 75.69%) * | 380.87% (307.73% ÷ 524.21%) * | 37.21% (26.40% ÷ 58.39%) * | 6.45% (0.96% ÷ 17.22%) * |
0.9% NaCl solution | 2 | 74.70% (64.98% ÷ 93.75%) * | 61.74% (50.88% ÷ 83.05%) *,1 | 74.36% (64.60% ÷ 93.50%) * | 87.43% (80.02% ÷ 101.96%) | 77.14% (67.75% ÷ 95.55%) | 252.07% (208.29% ÷ 337.88%) * | 19.89% (10.96% ÷ 37.38%) * | 30.85% (20.52% ÷ 51.09%) *,1 |
Inhibitor of the enzyme gamma-butyrobetaine hydroxylase | 3 | 96.00% (91.62% ÷ 104.59%) 1 | 92.83% (87.07% ÷ 104.14%) 2 | 85.60% (77.75% ÷ 100.99%) | 112.90% (104.37% ÷ 129.63%) | 105.16% (99.95% ÷ 115.37%) 1,2 | 112.42% (104.07% ÷ 128.80%) 1,2 | 108.27% (101.58% ÷ 121.38%) 1,2 | 112.74% (104.26% ÷ 129.35%) 1,2 |
Wallich Ligusticum extract | 4 | 111.11% (103.25% ÷ 126.51%) 1,2 | 92.00% (85.93% ÷ 103.89%) 2 | 105.54% (100.14% ÷ 116.15%) 1,2 | 225.86% (188.16% ÷ 299.76%) *1–3 | 272.50% (224.02% ÷ 367.52%) *1–3 | 110.34% (102.79% ÷ 125.15%) 1,2 | 105.47% (100.10% ÷ 116.01%) 1,2 | 121.43% (110.02% ÷ 143.78%) 1,2 |
Eleutherococcus extract | 5 | 134.78% (119.47% ÷ 164.79%) *,1–3 | 48.65% (37.47% ÷ 70.55%) *,1,3,4 | 81.05% (72.28% ÷ 98.22%) 4 | 78.05% (68.79% ÷ 96.19%) 3,4 | 94.65% (89.62% ÷ 104.51%) 1,4 | 25.08% (15.39% ÷ 44.08%) *,1–4 | 9.69% (3.07% ÷ 22.65%) *,1,3,4 | 91.99% (85.92% ÷ 103.89%) 1,2,4 |
Group | Group Number | SOD | GPO | AST | ALT | ||||
---|---|---|---|---|---|---|---|---|---|
Heart | Liver | Heart | Liver | Heart | Liver | Heart | Liver | ||
Control group | 1 | 69.39% (59.08% ÷ 89.59%) * | 36.16% (25.41% ÷ 57.21%) * | 19.91% (10.98% ÷ 37.41%) * | 41.24% (30.24% ÷ 62.82%) * | 558.24% (445.15% ÷ 779.91%) * | 183.48% (155.80% ÷ 237.72%) * | 485.27% (388.59% ÷ 674.77%) * | 127.19% (114.04% ÷ 152.96%) * |
0.9% NaCl solution | 2 | 44.58% (33.46% ÷ 66.36%) * | 43.85% (32.75% ÷ 65.59%) * | 32.36% (21.90% ÷ 52.86%) * | 43.98% (32.88% ÷ 65.73%) * | 407.62% (328.44% ÷ 562.81%) * | 198.82% (167.47% ÷ 260.25%) * | 424.31% (341.36% ÷ 586.89%) * | 165.96% (142.56% ÷ 211.81%) * |
Inhibitor of the enzyme gamma-butyrobetaine hydroxylase | 3 | 110.00% (102.58% ÷ 124.54%) 1,2 | 97.20% (93.50% ÷ 104.43%) 1,2 | 84.00% (75.80% ÷ 100.07%) 1,2 | 117.97% (107.68% ÷ 138.15%) *1,2 | 105.46% (100.10% ÷ 115.98%) 1,2 | 87.58% (80.20% ÷ 102.03%) 1,2 | 96.46% (92.32% ÷ 104.56%) 1,2 | 111.46% (103.47% ÷ 127.13%) 2 |
Ligusticum wallichii extract | 4 | 86.67% (79.07% ÷ 101.56%) 2,3 | 82.86% (74.43% ÷ 99.37%) 1,2 | 92.67% (86.85% ÷ 104.09%) 1,2 | 125.43% (112.80% ÷ 150.18%) *1,2 | 95.00% (90.13% ÷ 104.55%) 1,2 | 82.76% (74.31% ÷ 99.31%) 1,2 | 61.68% (50.81% ÷ 82.99%) *,1–3 | 111.37% (103.41% ÷ 126.97%) 2 |
Eleutherococcus extract | 5 | 147.83% (129.02% ÷ 184.68%) *,1–4 | 90.27% (83.64% ÷ 103.26%) 1,2 | 65.36% (54.72% ÷ 86.21%) *,1,2,4 | 114.63% (105.48% ÷ 132.58%) *,1,2 | 92.08% (86.04% ÷ 103.92%) 1,2 | 87.46% (80.05% ÷ 101.97%) 1,2 | 95.16% (90.35% 104.57%) 1,2,4 | 95,92% (91,49% ÷ 104.59%) 1,2 |
Group | Group Number | SOD (μmol/min g tissue) | GPO (mmol/min g tissue) | AST (mmol/min g tissue) | ALT (mmol/min g tissue) | ||||
---|---|---|---|---|---|---|---|---|---|
Heart | Liver | Heart | Liver | Heart | Liver | Heart | Liver | ||
Control group | 1 | 42.86% (31.79% ÷ 64.55%) * | 32.95% (22.44% ÷ 53.55%) * | 4.63% (0% ÷ 13.84%) * | 40.92% (29.92% ÷ 62.47%) * | 623.08% (495.42% ÷ 873.28%) * | 267.83% (220.42% ÷ 360.74%) * | 479.07% (383.78% ÷ 665.84%) * | 183.41% (155.75% ÷ 237.62%) * |
0.9% NaCl solution | 2 | 32.53% (22.05% ÷ 53.06%) * | 50.11% (38.93% ÷ 72.03%) * | 10.26% (3.47% ÷ 23.55%) * | 29.84% (19.61% ÷ 49.90%) * | 463.81% (371.96% ÷ 643.84%) * | 192.31% (162.52% ÷ 250.70%) * | 693.37% (549.94% ÷ 974.49%) * | 239.36% (198.52% ÷ 319.41%) * |
Inhibitor of the enzyme gamma-butyrobetaine hydroxylase | 3 | 116.00% (106.37% ÷ 134.88%) 1,2 | 114.33% (105.28% ÷ 132.07%) 1,2 | 96.40% (92.23% ÷ 104.56%) 1,2 | 112.90% (104.37% ÷ 129.63%) 1,2 | 119.73% (108.86% ÷ 141.03%) *,1,2 | 101.74% (98.76% ÷ 107.57%) 1,2 | 97.64% (94.24% ÷ 104.29%) 1,2 | 110.19% (102.70% ÷ 124.88%) 1,2 |
Ligusticum wallichii extract | 4 | 115.56% (106.08% ÷ 134.14%) 1,2 | 56.00% (44.90% ÷ 77.76%) *,3 | 115.25% (105.87% ÷ 133.62%) 1.2 | 216.81% (181.23% ÷ 286.56%) *,1–3 | 270.00% (222.09% ÷ 363.90%) *,1–3 | 158.13% (136.69% ÷ 200.15%) *,1.3 | 51.70% (40.53% ÷ 73.60%) *,1–3 | 547.96% (437.17% ÷ 765.10%) *,1–3 |
Eleutherococcus extract | 5 | 126.09% (113.26% ÷ 151.22%) *,1,2 | 97.30% (93.67% ÷ 104.40%) 1,2,4 | 94.77% (89.79% ÷ 104.53%) 1,2 | 104.88% (99.82% ÷ 114.79%) 1,2,4 | 97.82% (94.56% ÷ 104.22%) 1–4 | 91.09% (84.72% ÷ 103.58%) 1,2,4 | 107.96% (101.40% ÷ 120.80%) 1,2,4 | 100.16% (99.26% ÷ 101.94%) 1,2,4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozimek, M.; Zaborova, V.; Zolnikova, O.; Dzhakhaya, N.; Bueverova, E.; Sedova, A.; Rybakov, V.; Ostrovskaya, I.; Gaverova, Y.; Gurevich, K.; et al. Possibilities of Using Phyto-Preparations to Increase the Adaptive Capabilities of the Organism of Test Animals in Swimming. Appl. Sci. 2021, 11, 6412. https://doi.org/10.3390/app11146412
Ozimek M, Zaborova V, Zolnikova O, Dzhakhaya N, Bueverova E, Sedova A, Rybakov V, Ostrovskaya I, Gaverova Y, Gurevich K, et al. Possibilities of Using Phyto-Preparations to Increase the Adaptive Capabilities of the Organism of Test Animals in Swimming. Applied Sciences. 2021; 11(14):6412. https://doi.org/10.3390/app11146412
Chicago/Turabian StyleOzimek, Mariusz, Victoria Zaborova, Oxana Zolnikova, Natiya Dzhakhaya, Elena Bueverova, Alla Sedova, Vitaly Rybakov, Irina Ostrovskaya, Yulia Gaverova, Konstantin Gurevich, and et al. 2021. "Possibilities of Using Phyto-Preparations to Increase the Adaptive Capabilities of the Organism of Test Animals in Swimming" Applied Sciences 11, no. 14: 6412. https://doi.org/10.3390/app11146412
APA StyleOzimek, M., Zaborova, V., Zolnikova, O., Dzhakhaya, N., Bueverova, E., Sedova, A., Rybakov, V., Ostrovskaya, I., Gaverova, Y., Gurevich, K., Malakhovskiy, V., Rydzik, Ł., & Ambroży, T. (2021). Possibilities of Using Phyto-Preparations to Increase the Adaptive Capabilities of the Organism of Test Animals in Swimming. Applied Sciences, 11(14), 6412. https://doi.org/10.3390/app11146412