Behavioural Responses of Cerastoderma edule as Indicators of Potential Survival Strategies in the Face of Flooding Events
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sampling
2.2. Experimental Procedures and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O.; Roberts, D.C.; Masson-Delmotte, V.; Zhai, P.; Tignor, M.; Poloczanska, E.; Mintenbeck, K.; Alegría, A.; Nicolai, M.; Okem, A.; et al. (Eds.) Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019; in press. [Google Scholar]
- Díaz, S.; Settele, J.; Brondízio, E.; Ngo, H.; Guèze, M.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.; Butchart, S.; et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2019. [Google Scholar]
- Lotze, H.K.; Tittensor, D.P.; Bryndum-Buchholz, A.; Eddy, T.D.; Cheung, W.W.L.; Galbraith, E.D.; Barange, M.; Barrier, N.; Bianchi, D.; Blanchard, J.L.; et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl. Acad. Sci. USA 2019, 116, 12907–12912. [Google Scholar] [CrossRef] [Green Version]
- Smale, D.A.; Wernberg, T.; Oliver, E.C.J.; Thomsen, M.; Harvey, B.P.; Straub, S.C.; Burrows, M.T.; Alexander, L.V.; Benthuysen, J.A.; Donat, M.G.; et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 2019, 9, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Norkko, A.; Villnäs, A.; Norkko, J.; Valanko, S.; Pilditch, C.A. Size matters: Implications of the loss of large individuals for ecosystem function. Sci. Rep. 2013, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Beukema, J.J.; Dekker, R.; Philippart, C.J.M. Long-term variability in bivalve recruitment, mortality, and growth and their contribution to fluctuations in food stocks of shellfish-eating birds. Mar. Ecol. Prog. Ser. 2010, 414, 117–130. [Google Scholar] [CrossRef]
- Malham, S.K.; Hutchinsom, T.H.; Longshaw, M. A review of the biology of European cockles (Cerastoderma spp.). J. Mar. Biol. Assoc. UK 2012, 92, 1563–1577. [Google Scholar] [CrossRef]
- Verdelhos, T.; Cardoso, P.G.; Dolbeth, M.; Pardal, M.A. Recovery trends of Scrobicularia plana populations after restoration measures, affected by extreme climate events. Mar. Environ. Res. 2014, 98, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Olivier, A.V.D.S.; Jones, L.; Le Vay, L.; Christie, M.; Wilson, J.; Malham, S.K. A global review of the ecosystem services provided by bivalve aquaculture. Rev. Aquac. 2020, 12, 3–25. [Google Scholar] [CrossRef] [Green Version]
- Newell, R. Ecosystem influences natural and cultivated populations of suspension-feeding bivalve mollusks: A review. J. Shellfish Res. 2004, 23, 51–61. [Google Scholar]
- Norkko, J.; Shumway, S.E. Bivalves as bioturbators and bioirrigators. In Shellfish Aquaculture and the Environment; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 297–317. [Google Scholar]
- Karlson, A.M.L.; Pilditch, C.A.; Probert, P.K.; Leduc, D.; Savage, C. Large Infaunal Bivalves Determine Community Uptake of Macroalgal Detritus and Food Web Pathways. Ecosystems 2021, 24, 384–402. [Google Scholar] [CrossRef]
- Longshaw, M.; Malham, S. A review of the infectious agents, parasites, pathogens and commensals of European cockles (C. edule and C. glaucum). J. Mar. Biolog. Assoc. UK 2013, 93, 227–247. [Google Scholar] [CrossRef]
- Maia, F.; Barroso, C.M.; Gaspar, M.B. Biology of the common cockle Cerastoderma edule (Linnaeus, 1758) in Ria de Aveiro (NW Portugal): Implications for fisheries management. J. Sea Res. 2020, 171, 102024. [Google Scholar] [CrossRef]
- Genelt-Yanovskiy, E.; Poloskin, A.; Granovitch, A.; Nazarova, S.; Strelkov, P. Population structure and growth rates at biogeographic extremes: A case study of the common cockle, Cerastoderma edule (L.) in the Barents Sea. Mar. Pollut. Bull. 2010, 61, 247–253. [Google Scholar] [CrossRef]
- Verdelhos, T.; Marques, J.C.; Anastácio, P. The impact of estuarine salinity changes on the bivalves Scrobicularia plana and Cerastoderma edule, illustrated by behavioural and mortality responses on a laboratory assay. Ecol. Indic. 2015, 52, 96–104. [Google Scholar] [CrossRef]
- Verdelhos, T.; Marques, J.C.; Anastácio, P. Behavioural and mortality responses of the bivalves Scrobicularia plana and Cerastoderma edule to temperature, as indicator of climate change’s potential impacts. Ecol. Indic. 2015, 58, 95–103. [Google Scholar] [CrossRef]
- Dabouineau, L.; Ponsero, A. Synthesis on Biology of the Common European Cockle Cerastoderma edule, 2nd ed.; Réserve Naturelle Nationale Baie de St-Brieuc, Université Catholique de l’Ouest: Angers, France, 2009; p. 23. [Google Scholar]
- Burdon, D.; Callaway, R.; Elliott, M.; Smith, T.; Wither, A. Mass mortalities in bivalve populations: A review of the edible cockle Cerastoderma edule (L.). Estuar. Coast. Shelf Sci. 2014, 150, 271–280. [Google Scholar] [CrossRef]
- Kang, C.K.; Sauriau, P.G.; Richard, P.; Blanchard, G.F. Food sources of the infaunal suspension-feeding bivalve Cerastoderma edule in a muddy sandflat of Marennes-Oléron Bay, as determined by analyses of carbon and nitrogen stable isotopes. Mar. Ecol. Prog. Ser. 1999, 187, 147–158. [Google Scholar] [CrossRef]
- Sauriau, P.G.; Kang, C.K. Stable isotope evidence of benthic microalgae-based growth and secondary production in the suspension feeder Cerastoderma edule (Mollusca, Bivalvia) in the Marennes-Oléron Bay. Hydrobiologia 2000, 440, 317–329. [Google Scholar] [CrossRef]
- Rossi, F.; Herman, P.M.J.; Middelburg, J.J. Interspecific and intraspecific variation of δC and δN in deposit- and suspension-feeding bivalves (Macoma balthica and Cerastoderma edule): Evidence of ontogenetic changes in feeding mode of Macoma balthica. Limnol. Oceanogr. 2004, 49, 408–414. [Google Scholar] [CrossRef] [Green Version]
- Christianen, M.J.A.; Middelburg, J.J.; Holthuijsen, S.J.; Jouta, J.; Compton, T.J.; van der Heide, T.; Piersma, T.; Sinninghe Damsté, J.S.; van der Veer, H.W.; Schouten, S.; et al. Benthic primary producers are key to sustain the Wadden Sea food web: Stable carbon isotope analysis at landscape scale. Ecology 2017, 98, 1498–1512. [Google Scholar] [CrossRef]
- Parada, J.M.; Molares, J.; Otero, X. Multispecies Mortality patterns of commercial bivalves in relation to estuarine salinity fluctuation. Estuaries Coasts 2012, 35, 132–142. [Google Scholar] [CrossRef]
- The Food and Agriculture Organization. The State of World Fisheries and Aquaculture 2018: Meeting the Sustainable Developing Goals; The Food and Agriculture Organization: Rome, Italy, 2018; Licence: CC BY-NC-SA 3.0 IGO. [Google Scholar]
- Carss, D.N.; Brito, A.C.; Chainho, P.; Ciutat, A.; Montaudouin, X.; Fernández-Otero, R.M.; Incera Filgueira, M.; Garbutt, A.; Goedknegt, M.A.M.; Lynch, S.A.; et al. Ecosystem services provided by a non-cultured shellfish species: The common cockle Cerastoderma edule. Mar. Environ. Res. 2020, 158, 104931. [Google Scholar] [CrossRef]
- Moyle, P.B.; Lund, J.R.; Bennett, W.A.; Fleenor, W.E. Habitat variability and complexity in the upper San Francisco estuary. San Franc. Estuary Watershed Sci. 2010, 8, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Bassett, A.; Barborne, E.; Elliott, M.; Li, B.; Jorgensen, S.E.; Lucena-Moya, P.; Pardo, I.; Mouillot, D. A unifying approach to understanding transitional waters: Fundamental properties emerging from ecotone ecosystems. Estuar. Coast. Shelf Sci. 2013, 132, 5–16. [Google Scholar] [CrossRef]
- Gosling, E. Bivalve Molluscs Biology, Ecology, and Culture; Blackwell Publishing: Oxford, UK, 2004. [Google Scholar]
- Telesh, I.V.; Khlebovich, V.V. Principal processes within the estuarine salinity gradient: A review. Mar. Pollut. Bull. 2010, 61, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Doney, S.C.; Ruckelshaus, M.; Duffy, J.E.; Barry, J.P.; Chan, F.; English, C.A.; Galindo, H.M.; Grebmeier, J.M.; Hollowed, A.B.; Knowlton, N.; et al. Climate Change Impacts on Marine Ecosystems. Annu. Rev. Mar. Sci. 2012, 4, 11–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuji, T. Climate change, sea-level rise and implications for coastal and estuarine shoreline management with particular reference to the Ecology of intertidal benthic macrofauna in NW Europe. Biology 2012, 1, 597–616. [Google Scholar] [CrossRef] [Green Version]
- Wetz, M.S.; Yoskowitz, D.W. An ‘extreme’ future for estuaries? Effects of extreme climatic events on estuarine water quality and ecology. Mar. Pollut. Bull. 2013, 69, 7–18. [Google Scholar] [CrossRef]
- Akberali, H.B. Behaviour of Scrobicularia plana (da Costa) in water of various salinities. J. Exp. Mar. Biol. Ecol. 1978, 33, 237–249. [Google Scholar] [CrossRef]
- Akberali, H.B.; Davenport, J. The detection of salinity changes by the marine bivalve molluscs Scrobicularia plana (da Costa) and Mytilus edulis L. J. Exp. Mar. Biol. Ecol. 1982, 58, 59–72. [Google Scholar] [CrossRef]
- Chandran, V.R. Intracellular Osmoregulation in the Estuarine Mollusc Villorita cyprinoudes var. Cochinensis (Mollusca:Bivalvia) Hanley. Ph.D. Thesis, Cochin University, Cochin, India, 2002. [Google Scholar]
- Parada, J.M.; Molares, J. Natural mortality of the cockle Cerastoderma edule (L.) from the Ria of Arousa (NW Spain) intertidal zone. Rev. Biol. Mar. Oceanogr. 2008, 43, 501–511. [Google Scholar] [CrossRef] [Green Version]
- Neto, J.M.; Teixeira, H.; Patrício, J.; Baeta, A.; Veríssimo, H.; Pinto, R.; Marques, J.C. The response of estuarine macrobenthic communities to natural and human-induced changes: Dynamics and ecological quality. Estuaries Coasts 2010, 33, 1327–1339. [Google Scholar] [CrossRef]
- Crespo, D.; Verdelhos, T.; Dolbeth, M.; Pardal, M.A. Effects of the over harvesting on an edible cockle (Cerastoderma edule Linaeus, 1758) population on a Southern european estuary. Fresenius Environ. Bull. 2010, 19, 2801–2811. [Google Scholar]
- Underwood, A.T.; Chapman, M.G.; Crowe, T.P. Identifying and understanding ecological preferences for habitat or prey. J. Exp. Mar. Biol. Ecol. 2004, 300, 161–187. [Google Scholar] [CrossRef]
- Evans, D.H. Osmotic and Ionic Regulation: Cells and Animals; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Carregosa, V.; Figueira, E.; Gil, A.M.; Pereira, S.; Pinto, J.; Soares, A.M.V.M.; Freitas, R. Tolerance of Venerupis philippinarum to salinity: Osmotic and metabolic aspects. Comp. Biochem. Physiol. A 2014, 171, 36–43. [Google Scholar] [CrossRef]
- Cardoso, P.G.; Raffaelli, D.; Lillebø, A.I.; Verdelhos, T.; Pardal, M.A. The impact of extreme flooding events and anthropogenic stressors on the microbenthic communities’ dynamics. Estuar. Coast. Shelf Sci. 2008, 76, 553–565. [Google Scholar] [CrossRef] [Green Version]
- Anastácio, P.M.; Verdelhos, T.; Marques, J.C.; Pardal, M.A. A validated population-dynamics model for Scrobicularia plana (Mollusca, Bivalvia) in a south-western European estuary. Mar. Freshw. Res. 2009, 60, 404–416. [Google Scholar] [CrossRef]
- Dolbeth, M.; Cardoso, P.G.; Grilo, T.F.; Bordalo, M.D.; Raffaelli, D.; Pardal, M.A. Long-term changes in the production of estuarine macrobenthos affected by multiple stressors. Estuar. Coast. Shelf. Sci. 2011, 92, 10–18. [Google Scholar] [CrossRef]
- Grilo, T.F.; Cardoso, P.G.; Dolbeth, M.; Bordalo, M.A.; Pardal, M.A. Effects of extreme climate events on the macrobenthic communities’ structure and functioning of a temperate estuary. Mar. Pollut. Bull. 2011, 62, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Huxham, M.; Richards, M. Can postlarval bivalves select sediment type during settlement? A field test with Macoma balthica (L.) and Cerastoderma edule (L.). J. Exp. Mar. Biol. Ecol. 2003, 288, 279–293. [Google Scholar] [CrossRef]
- Hunt, H.L.; Maltais, M.-J.; Fugate, D.C.; Chant, R.J. Spatial and temporal variability in in juvenile bivalve dispersal: Effects of sediment transport and flow regime. Mar. Ecol. Prog. Ser. 2007, 352, 145–159. [Google Scholar] [CrossRef] [Green Version]
- Peña, E.; Anta, J.; Puertas, J.; Teijeiro, T. Estimation of Drag Coefficient and Settling Velocity of the Cockle Cerastoderma edule Using Particle Image Velocimetry (PIV). J. Coast. Res. 2008, 24, 150–158. [Google Scholar] [CrossRef]
- Anta, J.; Peña, E.; Puertas, J.; Cea, L. A bedload transport equation for the Cerastoderma edule cockle. J. Mar. Syst. 2013, 111, 189–195. [Google Scholar] [CrossRef]
- Coffen-Smout, S.S.; Rees, E.I.S. Burrowing behaviour and dispersion of cockles Cerastoderma edule L. following simulated fishing disturbance. Fish. Res. 1999, 40, 65–72. [Google Scholar] [CrossRef]
- Roper, D.S.; Hickey, C.W. Behavioural responses of the marine bivalve Macomona liliana exposed to copper- and chlordane-dosed sediments. Mar. Biol. 1994, 118, 673–680. [Google Scholar] [CrossRef]
- Hellou, J. Behavioural ecotoxicology, an “early warning” signal to assess environmental quality. Environ. Sci. Pollut. Res. Int. 2011, 18, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ward, D.J.; Simpson, S.L.; Jolley, D.F. Avoidance of contaminated sediments by an amphipod (Melita plumulosa), A harpacticoid copepod (Nitocra spinipes), and a snail (Phallomedusa solida). Environ. Toxicol. Chem. 2013, 32, 644–652. [Google Scholar] [CrossRef]
- Araújo, C.V.M.; Moreira-Santos, M.; Ribeiro, R. Active and passive spatial avoidance by aquatic organisms from environmental stressors: A complementary perspective and a critical review. Environ. Int. 2016, 92, 405–415. [Google Scholar] [CrossRef]
- Allan, J.D. Macroinvertebrate drift in a Rocky Mountain stream. Hydrobiologia 1988, 144, 261–268. [Google Scholar] [CrossRef]
- Brittain, J.E.; Eikeland, T.J. Invertebrate drift—A review. Hydrobiologia 1988, 166, 77–93. [Google Scholar] [CrossRef]
- Humphries, S.; Ruxton, G.D. Estimation of intergenerational drift dispersal distances and mortality risk for aquatic macroinvertebrates. Limnol. Oceanogr. 2003, 48, 2117–2124. [Google Scholar] [CrossRef]
- Svendsen, C.R.; Quinn, T.; Kolbe, D. Review of Macroinvertebrate Drift in Lotic Ecosystems; Final Report, Manuscript 92; ildlife Research Program, Environmental and Safety Division: Seattle, WA, USA, 2004. [Google Scholar]
- Flecker, A.S. Fish predation and the evolution of invertebrate drift periodicity: Evidence from neotropical streams. Ecology 1992, 73, 438–448. [Google Scholar] [CrossRef] [Green Version]
- Linke, O. Die Biota des Jadebusenwattes. Helgoländer Wiss. Meeresunters. 1939, 1, 201–348. [Google Scholar] [CrossRef]
- Peteiro, L.G.; Woodin, S.; Wethey, D.; Costas-Costas, D.; Martínez-Casal, A.; Olabarria, C.; Vázquez, E. Responses to salinity stress in bivalves: Evidence of ontogenetic changes in energetic physiology on Cerastoderma edule. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, I. Difference in density and growth in a cockle population in the Dutch Wadden Sea. Arch. Neerl. Zool. 1957, 12, 351–453. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, W. Fossilien, Bilder und Gedanken zur Paläontologischen Wissenschaft; Waldemar Kramer: Frankfurt am Main, Germany, 1980; 244p. [Google Scholar]
- Cadée, G.C. Rolling Cockles: Shell Abrasion and Repair in a Living Bivalve Cerastoderma edule L. Ichnos 2016, 23, 180–188. [Google Scholar] [CrossRef] [Green Version]
Runs (n°) | Tanks/Run (n°) | Ntank (N° Individuals/Tank) | Ntreatment (N° Individuals/Treatment) | ||||||||||
Treatment A | 3 | 2 | 10 | 60 | |||||||||
Treatment B | 3 | 2 | 10 | 60 | |||||||||
Control | 3 | 2 | 10 | 60 | |||||||||
Ntotal | 180 | ||||||||||||
Time (h) | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 | 156 |
Salinity | |||||||||||||
Treatment A | 20 | 15 | 10 | 5 | 10 | 15 | 20 | 15 | 10 | 5 | 5 | 5 | 5 |
Treatment B | 20 | 15 | 10 | 5 | 10 | 15 | 20 | 15 | 10 | 5 | 10 | 15 | 20 |
Control | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
Time (h) | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 | 156 |
Treatment A | |||||||||||||
Salinity | 20 | 15 | 10 | 5 | 10 | 15 | 20 | 15 | 10 | 5 | 5 | 5 | 5 |
Burrowed (%) | 98 | 100 | 56 | 17 | 40 | 82 | 97 | 97 | 75 | 33 | 18 | 3 | 3 |
Δ Burrowed | +2 | −44 | −39 | +23 | +42 | +15 | 0 | −22 | −42 | −15 | −15 | 0 | |
Δ Burrowed [on Each Salinity Variation Cycle] | 1st Cycle | 2nd Cycle | |||||||||||
Decrease [0–48 h] | Increase [48–84 h] | Decrease [84–120 h] | Maintenance [120–156 h] | ||||||||||
−81 | +80 | −63 | −30 | ||||||||||
Treatment B | |||||||||||||
Salinity | 20 | 15 | 10 | 5 | 10 | 15 | 20 | 15 | 10 | 5 | 10 | 15 | 20 |
Burrowed (%) | 96 | 98 | 60 | 12 | 38 | 88 | 96 | 95 | 74 | 38 | 59 | 88 | 93 |
Δ Burrowed | +2 | −38 | −48 | +26 | +50 | +8 | −1 | −21 | −36 | +21 | +29 | +5 | |
Δ Burrowed [on Each Salinity Variation Cycle] | 1st Cycle | 2nd Cycle | |||||||||||
Decrease [0–48 h] | Increase [48–84 h] | Decrease [84–120 h] | Increase [120–156 h] | ||||||||||
−84 | +84 | −58 | +55 | ||||||||||
Treatment C | |||||||||||||
Salinity | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
Burrowed (%) | 90 | 93 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 96 | 95 | 91 | 90 |
Δ Burrowed | +3 | +7 | 0 | 0 | 0 | 0 | 0 | 0 | −4 | −1 | −4 | −1 |
Treatment A | |||
Mauchly’s Sphericity | W | Sig | |
0 | <0.05 | ||
Greenhouse–Geisser | ε | ||
0.196 | |||
df, df error | F | Sig | |
2.354, 11.769 | 61.414 | <0.05 | |
Treatment B | |||
Mauchly’s Sphericity | W | Sig | |
0 | <0.05 | ||
Greenhouse–Geisser | ε | ||
0.241 | |||
df, df error | F | Sig | |
2.890, 14.451 | 39.516 | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verdelhos, T.; Veríssimo, H.; Marques, J.C.; Anastácio, P. Behavioural Responses of Cerastoderma edule as Indicators of Potential Survival Strategies in the Face of Flooding Events. Appl. Sci. 2021, 11, 6436. https://doi.org/10.3390/app11146436
Verdelhos T, Veríssimo H, Marques JC, Anastácio P. Behavioural Responses of Cerastoderma edule as Indicators of Potential Survival Strategies in the Face of Flooding Events. Applied Sciences. 2021; 11(14):6436. https://doi.org/10.3390/app11146436
Chicago/Turabian StyleVerdelhos, Tiago, Helena Veríssimo, João Carlos Marques, and Pedro Anastácio. 2021. "Behavioural Responses of Cerastoderma edule as Indicators of Potential Survival Strategies in the Face of Flooding Events" Applied Sciences 11, no. 14: 6436. https://doi.org/10.3390/app11146436
APA StyleVerdelhos, T., Veríssimo, H., Marques, J. C., & Anastácio, P. (2021). Behavioural Responses of Cerastoderma edule as Indicators of Potential Survival Strategies in the Face of Flooding Events. Applied Sciences, 11(14), 6436. https://doi.org/10.3390/app11146436