Natural Radioactivity, Radiological Hazard and Petrographical Studies on Aswan Granites Used as Building Materials in Egypt
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results and Discussion
4.1. Sample Petrographic Description
4.2. Analysis of Radionuclides
4.3. Radiological Hazards Indices
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sonkawade, R.; Kant, K.; Muralithar, S.; Kumar, R.; Ramola, R.C. Natural radioactivity in common building construction and radiation shielding materials. Atmos. Environ. 2008, 42, 2254–2259. [Google Scholar] [CrossRef]
- Zakaly, H.M.; Uosif, M.A.; Madkour, H.; Tammam, M.; Issa, S.; Elsaman, R.; El-Taher, A. Assessment of natural radionuclides and heavy metal concentrations in marine sediments in view of tourism activities in Hurghada city, northern Red Sea, Egypt. J. Phys. Sci. 2019, 30, 21–47. [Google Scholar] [CrossRef]
- UNSCEAR. Sources and Effects of Ionizing Radiation; Annex, B., Ed.; Exposures from Natural Radiation Sources; UNSCEAR 2000 REPORT; United Nations: New York, NY, USA, 2000; Volume I. [Google Scholar]
- Tsirambides, A. The Greek Marbles and Other Decorative Stones; University Studio Press: Thessaloniki, Greece, 1996. [Google Scholar]
- El-Gamal, H.; Sidique, E.; El-Haddad, M. Spatial distributions and risk assessment of the natural radionuclides in the granitic rocks from the Eastern Desert, Egypt. Minerals 2019, 9, 386. [Google Scholar] [CrossRef] [Green Version]
- Ene, A.; Pascu, E.; Stavarache, M. Granite slabs between radiation and design. In Proceedings of the Abstract Book International Scientific Conference “Environmental Challenges in the Black Sea Basin: Impact on Human Health”, Galati, Romania, 23–26 September 2020; Ene, A., Teodorof, L., Eds.; Casa Cartii de Stiinta: Cluj Napoca, Romania, 2020; pp. 44–45. [Google Scholar]
- Rashwan, M.; Darwish, M. Structural Dynamic Characteristics of an Ancient Egyptian Obelisk. In Facing the Challenges in Structural Engineering. GeoMEast 2017. Sustainable Civil Infrastructures; Rodrigues, H., Elnashai, A., Calvi, G., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Awad, H.A.; Zakaly, H.M.H.; Nastavkin, A.V.; El-Taher, A. Radioactive content in the investigated granites by geochemical analyses and radiophysical methods around Um Taghir, Central Eastern Desert, Egypt. J. Phys. Conf. Ser. 2020, 1582, 012007. [Google Scholar] [CrossRef]
- Awad, H.A.; Zakaly, H.M.; Nastavkin, A.V.; El Tohamy, A.M.; El-Taher, A. Radioactive mineralizations on granitic rocks and silica veins on shear zone of El-Missikat area, Central Eastern Desert, Egypt. Appl. Radiat. Isot. 2021, 168, 109493. [Google Scholar] [CrossRef] [PubMed]
- Malek, J.; Nicholson, P.T.; Shaw, I. Stones. In Ancient Egyptian Materials and Technology; Nicholson, P.T., Shaw, I., Eds.; University of Cambridge Press: Cambridge, UK, 2000; pp. 5–77. [Google Scholar]
- Whicker, F.W.; Eisenbud, M.; Gesell, T. Environmental radioactivity from natural, industrial, and military sources. Radiat. Res. 1997, 148, 402. [Google Scholar] [CrossRef]
- Gindy, A.R.; Tamish, M.M. Petrogenetic revision of the basement rocks in the environs of Aswan, southern Egypt. Egypt J. Geol. 1998, 42, 1–14. [Google Scholar]
- Noweir, A.M.; Abu El Ela, A.M.; Sewifi, B.M. New contributions to the geology, geochemistry and tectonic setting of the Aswan granites. Qatar Univ. Sci. Bull. 1990, 10, 395–419. [Google Scholar]
- Ragab, A.I.; Meneisy, M.Y.; Taher, R.M. Contributions to the petrogenesis and age of Aswan granitic rocks, Egypt. Neu. Jahrb Miner. Abh. 1978, 133, 71–87. [Google Scholar]
- Ammar, S.E. Acidic and intermediate rocks suite at Aswan Cataract; Petrogenetic studies, Egypt. J. Geol. 2003, 47, 1199–1213. [Google Scholar]
- Assran, H.M. Petrology and radioactivity of the famous Aswan monumental red granites new occurrence, Gebel Um Shaghir area, South Western Desert, Egypt. Arab. J. Geosci. 2015, 8, 7719–7729. [Google Scholar] [CrossRef]
- Kusky, T.M.; Abdelsalam, M.; Tucker, R.D.; Stern, R.J. Evolution of the East African and related orogens, and the assembly of Gondwana. Precambrian Res. 2003, 123, 81–85. [Google Scholar] [CrossRef]
- Greiling, R.O.; Rashwan, A.A.; El Ramly, M.F.; El Din, G.M.K. Towards a comprehensive structural synthesis of the (proterozoic) arabian-nubian shield in E. Egypt. In Geoscientific Research in Northeast Africa; Springer: Berlin/Heidelberg, Germany, 2017; pp. 15–19. [Google Scholar] [CrossRef]
- Papaefthymiou, H.; Papatheodorou, G.; Moustakli, A.; Christodoulou, D.; Geraga, M. Natural radionuclides and 137Cs distributions and their relationship with sedimentological processes in Patras Harbour, Greece. J. Environ. Radioact. 2007, 94, 55–74. [Google Scholar] [CrossRef]
- Ene, A.; Pantelica, A. Characterization of metallurgical slags using low-level gamma-ray spectrometry and neutron activation analysis. Rom. J. Phys. 2011, 56, 1011–1018. [Google Scholar]
- Malczewski, D.; Teper, L.; Dorda, J. Assessment of natural and anthropogenic radioactivity levels in rocks and soils in the environs of Swieradow Zdroj in Sudetes, Poland, by in situ gamma-ray spectrometry. J. Environ. Radioact. 2004, 73, 233–245. [Google Scholar] [CrossRef]
- Said, A.F.; Salam, A.M.; Hassan, S.F.; Mohamed, W.S. Assessment of the Environmental Radioactivity Impacts and Health Hazards Indices at Wadi Sahu Area, Sinai, Egypt. In Proceedings of the Tenth Radiation Physics & Protection Conference, Cairo, Egypt, 27–30 November 2010; pp. 145–159. [Google Scholar]
- IAEA. Guidelines for Radioelement Mapping Using Gamma Ray Spectrometry Data; IAEA-TECDOC-1363; IAEA: Vienna, Austria, 2003; pp. 6–7. [Google Scholar]
- IAEA. Evaluating the Reliability of Predictions Made Using Environmental Transfer Models; Safety Series: No. 100; International Atomic Energy Agency: Vienna, Austria, 1989. [Google Scholar]
- Rogers, J.J.W.; Adams, J.S.S. Uranium. In Handbook of Geochemistry; Wedepohl, K.H., Ed.; Springer: New York, NY, USA, 1969; pp. 92 B1–92 C10. [Google Scholar]
- Stuckless, J.S.; Bunker, C.M.; Bush, C.A.; Doering, W.P.; Scott, J.H. Geochemical and petrological studies of a uraniferous granite from the Granite Mountains, Wyoming. J. Res. US Geol. Surv. 1977, 5, 61–81. [Google Scholar]
- Mudd, G.M. Radon releases from Australian uranium mining and milling projects: Assessing the UNSCEAR approach. J. Environ. Radioact. 2008, 99, 288–315. [Google Scholar] [CrossRef]
- United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionzing Radiation; United Nations Scientific Committee on the Effects of Atomic Radiation: 1994 Report to the General Assembly, with Scientific Annexes, Nature; United Nations: New York, NY, USA, 1994. [Google Scholar]
- Ghoneim, M.M.; Gawad, A.E.A.; Awad, H.A.; Hesham, M.H.Z.; Mira, H.I.; El-Taher, A. Distribution patterns of natural radioactivity and rare earth elements in intrusive rocks (El Sela area, Eastern Desert, Egypt). Int. J. Environ. Anal. Chem. 2021, 1–14. [Google Scholar] [CrossRef]
- Nagar, M.S.; Shahin, H.A.; Bahige, M. Column Percolation Leaching of Uranium from El-Sela Area, South Eastern Desert, Egypt. Res. Rev. J. Chem. 2016, 5, 32–41. [Google Scholar]
- Issa, S.A.M.; Uosif, M.A.M.; El-Salam, L.M.A. Natural radionuclide concentrations in granite rocks in Aswan and Central-Southern Eastern Desert, Egypt and their radiological implications. Radiat. Prot. Dosim. 2012, 150, 488–495. [Google Scholar] [CrossRef]
- El-Shershaby, A. Study of radioactivity levels in granite of Gable Gattar II in the north eastern desert of Egypt. Appl. Radiat. Isot. 2002, 57, 131–135. [Google Scholar] [CrossRef]
- Walley El-Dine, N. Study of natural radioactivity and the state of radioactive disequilibrium in U-series for rock samples, North Eastern Desert, Egypt. Appl. Radiat. Isot. 2008, 66, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.K.; Abbady, A.; El Arabi, A.M.; Michel, R.; El-Kamel, A.H.; Abbady, A.G.E. Comparative study of the natural radioactivity of some selected rocks from Egypt and Germany. Indian J. Pure Appl. Phys. 2006, 44, 209–215. [Google Scholar]
- Uosif, M.A.M.; Abdel-Salam, L.M. An assessment of the external radiological impact in granites and pegmatite in central eastern desert in Egypt with elevated natural radioactivity. Radiat. Prot. Dosim. 2011, 147, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-J.; Lin, Y.-M. Assessment of building materials for compliance with regulations of ROC. Environ. Int. 1997, 22 (Suppl. 1), 221–226. [Google Scholar] [CrossRef]
- European Commission. Radiation Protection 112: Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials Directorate–General Environment, Nuclear Safety and Civil Protection; Office for Official Publications of the European Communities: Luxembourg, 1999. [Google Scholar]
- Nada, A. Evaluation of natural radionuclides at Um-Greifat area, Eastern Desert of Egypt. Appl. Radiat. Isot. 2003, 58, 275–280. [Google Scholar] [CrossRef]
- International Commission on Radiological Protection (ICRP). The 1990-91 Recommendations of the International Commission on Radiological Protection; Publication 60, Ann. ICRP 21; ICRP: Stockholm, Sweden, 1992. [Google Scholar]
Radionuclide Activity (Bq kg−1) | Activity Ratio | ||||||
---|---|---|---|---|---|---|---|
Sample Code | U-238 | Th-232 | Ra-226 | K-40 | U/Ra | U/Th | Th/U |
BA1 | 49.40 | 36.54 | 11.10 | 1095.50 | 4.45 | 1.35 | 0.74 |
BA2 | 12.35 | 32.48 | 22.20 | 801.28 | 0.56 | 0.38 | 2.63 |
BA3 | 49.40 | 105.56 | 33.30 | 1430.41 | 1.48 | 0.47 | 2.14 |
BA4 | 24.70 | 44.66 | 22.20 | 870.14 | 1.11 | 0.55 | 1.81 |
BA5 | 24.70 | 56.84 | 11.10 | 848.23 | 2.23 | 0.43 | 2.30 |
GS1 | 12.35 | 60.90 | 22.20 | 1098.63 | 0.56 | 0.20 | 4.93 |
GS2 | 61.75 | 40.60 | 33.30 | 788.76 | 1.85 | 1.52 | 0.66 |
GS3 | 61.75 | 93.38 | 44.40 | 1064.20 | 1.39 | 0.66 | 1.51 |
LR1 | 37.05 | 97.44 | 55.50 | 1082.98 | 0.67 | 0.38 | 2.63 |
LR2 | 135.85 | 36.54 | 44.40 | 760.59 | 3.06 | 3.72 | 0.27 |
DR1 | 24.70 | 60.90 | 44.40 | 1045.42 | 0.56 | 0.41 | 2.47 |
DR2 | 61.75 | 89.32 | 44.40 | 1076.72 | 1.39 | 0.69 | 1.45 |
R1 | 24.70 | 48.72 | 22.20 | 1136.19 | 1.11 | 0.51 | 1.97 |
R2 | 24.70 | 56.84 | 33.30 | 1483.62 | 0.74 | 0.43 | 2.30 |
R3 | 49.40 | 48.72 | 22.20 | 1295.82 | 2.23 | 1.01 | 0.99 |
G1 | 74.10 | 48.72 | 33.30 | 1180.01 | 2.23 | 1.52 | 0.66 |
G2 | 148.20 | 93.38 | 88.80 | 1298.95 | 1.67 | 1.59 | 0.63 |
G3 | 111.15 | 64.96 | 44.40 | 1054.81 | 2.50 | 1.71 | 0.58 |
RA1 | 61.75 | 89.32 | 11.10 | 1139.32 | 5.56 | 0.69 | 1.45 |
RA2 | 12.35 | 60.90 | 11.10 | 1367.81 | 1.11 | 0.20 | 4.93 |
RA3 | 24.70 | 64.96 | 11.10 | 1305.21 | 2.23 | 0.38 | 2.63 |
WH1 | 18.53 | 89.32 | 22.20 | 1270.78 | 0.83 | 0.21 | 4.82 |
WH2 | 37.05 | 4.06 | 11.10 | 331.78 | 3.34 | 9.13 | 0.11 |
WH 3 | 12.35 | 8.12 | 4.44 | 209.71 | 2.78 | 1.52 | 0.66 |
YV1 | 12.35 | 81.20 | 33.30 | 1302.08 | 0.37 | 0.15 | 6.57 |
YV2 | 111.15 | 16.24 | 55.50 | 838.84 | 2.00 | 6.84 | 0.15 |
YV3 | 37.05 | 36.54 | 11.10 | 992.21 | 3.34 | 1.01 | 0.99 |
RN | 123.50 | 40.60 | 55.83 | 1245.74 | 2.21 | 3.04 | 0.33 |
F | 74.10 | 69.02 | 44.40 | 1198.79 | 1.67 | 1.07 | 0.93 |
Average | 52.2 | 57.8 | 31.2 | 1055.7 | 1.9 | 1.4 | 1.9 |
Min | 12.4 | 4.1 | 4.4 | 209.7 | 0.4 | 0.2 | 0.1 |
Max | 148.2 | 105.6 | 88.8 | 1483.6 | 5.6 | 9.1 | 6.6 |
Country | Region | No. of Samples | 226Ra | 232Th | 40K | Reference | |
---|---|---|---|---|---|---|---|
Egypt | Variety of Aswan Granite | 29 | 11–89 | 4–97 | 210–1484 | Present study | |
Eastern Desert | G. Qash Amir | - | 6.4–65.3 ppm | 11.4–43.8 ppm | 3.2–7.5 ppm | [29] | |
G. El Sela | - | 103–2047 | 12.4–101.2 | 831.6–1394.6 | [30] | ||
W. Allaqi | 11 | 9–111 | 8–75 | 119–790 | [31] | ||
Abu Ziran | 6 | 19–34 | 11–15 | 216–274 | [31] | ||
Gattar (GII) | 50 | 165–27,851 | 71–274 | 1048–1230 | [32] | ||
Gattar (GV) | 15 | 174–50,378 | 51–902 | 640–1841 | [33] | ||
El-Missikat | 9 | 12.4–534.4 | 56.6–169.8 | 398–1113 | [9] | ||
Wadi El-Gemal | - | 25–59 | 28–759 | 970–1280 | [34] | ||
Ras Baroud | - | 11.5–172.8 | 18.4–103.4 | 87.9–454.7 | [35] | ||
Different countries all over the world | 167 | 0.2–160 | <4–253 | <36–2355 | [36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moghazy, N.M.; El-Tohamy, A.M.; Fawzy, M.M.; Awad, H.A.; Zakaly, H.M.H.; Issa, S.A.M.; Ene, A. Natural Radioactivity, Radiological Hazard and Petrographical Studies on Aswan Granites Used as Building Materials in Egypt. Appl. Sci. 2021, 11, 6471. https://doi.org/10.3390/app11146471
Moghazy NM, El-Tohamy AM, Fawzy MM, Awad HA, Zakaly HMH, Issa SAM, Ene A. Natural Radioactivity, Radiological Hazard and Petrographical Studies on Aswan Granites Used as Building Materials in Egypt. Applied Sciences. 2021; 11(14):6471. https://doi.org/10.3390/app11146471
Chicago/Turabian StyleMoghazy, Nasser M., Amira M. El-Tohamy, Mona M. Fawzy, Hamdy A. Awad, Hesham M. H. Zakaly, Shams A. M. Issa, and Antoaneta Ene. 2021. "Natural Radioactivity, Radiological Hazard and Petrographical Studies on Aswan Granites Used as Building Materials in Egypt" Applied Sciences 11, no. 14: 6471. https://doi.org/10.3390/app11146471
APA StyleMoghazy, N. M., El-Tohamy, A. M., Fawzy, M. M., Awad, H. A., Zakaly, H. M. H., Issa, S. A. M., & Ene, A. (2021). Natural Radioactivity, Radiological Hazard and Petrographical Studies on Aswan Granites Used as Building Materials in Egypt. Applied Sciences, 11(14), 6471. https://doi.org/10.3390/app11146471