Combining Interference Lithography and Two-Photon Lithography for Fabricating Large-Area Photonic Crystal Structures with Controlled Defects
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marc, G.; Jene, A.G. Recapturing and trapping single molecules with a solidstate nanopore. Nat. Nanotechnol. 2007, 2, 775–779. [Google Scholar]
- Derek, S. Molecular ping-pong. Nat. Nanotechnol. 2007, 2, 741–742. [Google Scholar]
- Fatin, B.; Myungchan, K.; Charles, R.M. Plasma-Etched Nanopore Polymer Films and Their Use as Templates To Prepare “Nano Test Tubes. Small 2007, 3, 106–110. [Google Scholar]
- Jeffrey, D.U.; Kevin, K.; Alan, J.H.; Michael, M. Submicrometer Pore-Based Characterization and Quantification of Antibody–Virus Interactions. Small 2006, 2, 967–972. [Google Scholar]
- Michal, L.; Tali, S.; Alexander, V.; Israel, R. Nanoparticle Nanotubes. Angew. Chem. Int. Ed. 2003, 42, 5576–5579. [Google Scholar]
- Chan, S.; Scott, S.R.; Philippe, M.F.; Benjamin, L.M. Identification of Gram Negative Bacteria Using Nanoscale Silicon Microcavities. JACS 2001, 123, 11797–11798. [Google Scholar] [CrossRef] [PubMed]
- Kyle, B.; Gregory, M.; Martin, M.; Konstantinos, K.; Hendrick, W.H.; James, L.M.; Vincent, T. DNA Translocations through Nanopores under Nanoscale Preconfinement. Nano Lett. 2018, 18, 660–668. [Google Scholar]
- Zeno, G.; Nicola, D.; Lorenzo, P.; Giuseppe, P.; Camillia, B.; Giorgio, S. Monitoring penetration of ethanol in a porous silicon microcavity by photoluminescence interferometry. APL 2001, 78, 3744–3746. [Google Scholar]
- Vincent, B.; Oliveri, G.; Eric, C. Photonic band gaps and holography. JACS 1997, 82, 60–64. [Google Scholar]
- Martin, C.; David, N.S.; Mark, T.H.; Robert, G.D.; Andrew, J.T. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 2000, 404, 53–56. [Google Scholar]
- Chen, Y.C.; Geddes, J.B., III; Lee, J.-T.; Braun, P.V.; Wiltzius, P. Holographically fabricated photonic crystals with large reflectance. APL 2007, 91, 241103. [Google Scholar] [CrossRef] [Green Version]
- Vinayak, R.; Mark, E.N.; Natalia, B.; Paul, V.B.; Pierre, W. Three dimensional silicon-air photonic crystals with controlled defects using interference lithography. APL 2008, 92, 173304. [Google Scholar]
- Shu, Y.; Mischa, M.; Joanna, A.; Pierre, W.; Paul, M.C.; William, B.R. Creating Periodic Three-Dimensional Structures by Multibeam Interference of Visible Laser. Chem. Mater. 2002, 14, 2831–2833. [Google Scholar]
- Yuri, V.M.; Daniel, C.M.; Armando, B.; Georg, V.F. Three-dimensional face-centered-cubic photonic crystal templates by laser holography: Fabrication, optical characterization, and band-structure calculations. APL 2003, 82, 1284–1286. [Google Scholar]
- Satoru, S.; Hong-Bo, S. Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference. APL 2003, 83, 608–611. [Google Scholar]
- Chaitanya, K.U.; Martin, M.; Edwin, L.T. Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures. APL 2004, 84, 5434–5437. [Google Scholar]
- Nestor, G.Q.; Simone, H.; Stefan, F.; Simone, K.A.; Priyamvada, V.; Anil, B.; Christian, P.; Alberto, M.; Jose, L.T.; Ulrich, J.; et al. UV-Laser Interference Lithography for Local Functionalization of Plasmonic Nanostructures with Responsive Hydrogel. Phys. Chem. C 2020, 124, 3297–3305. [Google Scholar]
- Paras, N.P. Introduction to Biophotonics, 1st ed.; Wiley: Hoboken, NJ, USA, 2003; p. 149. [Google Scholar]
- Saulius, J.; Vygantas, M.; Khuen, S.; Masafumi, M.; Hiroaki, M. Two-photon lithography of nanorods in SU-8 photoresist. Nanotechnology 2005, 16, 846–849. [Google Scholar]
- Sun, H.-B.; Kawata, S. Two-Photon Photopolymerization and 3D Lithographic Microfabrication. Adv. Polym. Sci. 2006, 170, 169–273. [Google Scholar]
- Gopinath, P.; Biswajit, N.; Santosh, K.S.; Soumya, R.N.; Susanta, K.T. Metamaterial based photonic crystal fiber memory for optical computer. OPTIK 2018, 171, 393–396. [Google Scholar]
- Winfried, D.; James, H.S.; Watt, W.W. Two-photon laser scanning fluorescence microscopy. Science 1990, 248, 73–76. [Google Scholar]
- Tan, D.; Li, Y.; Qi, F.; Yang, H.; Gong, Q.; Dong, X.; Duan, X. Reduction in feature size of two-photon polymerization using SCR500. APL 2007, 90, 071106. [Google Scholar] [CrossRef]
- Tania, L.; Laura, B.; Luca, T.; Francesca, P.; Andrea, G.; Paolo, C.; Andrea, G.; Giovanna, B. Three-dimensionally two-photon lithography realized vascular grafts. Biomed. Mater. 2021, 16, 035013. [Google Scholar]
- Pawel, F.; Joanna, O. A New Approach to Micromachining: High-Precision and Innovative Additive Manufacturing Solutions Based on Photopolymerization Technology. Materials 2020, 13, 2951. [Google Scholar]
- Pierre, R.V.; Michel, P. Photonic bandgaps in periodic dielectric structures. Prog. Quantum. Electron. 1994, 18, 153–200. [Google Scholar]
- Zhang, A.-P.; Burzynski, R.; Yoon, Y.-K.; Prasad, P.N.; He, S. Double-layer fabrication scheme for large-area polymeric photonic crystal membrane on silicon surface by multibeam interference lithography. Opt. Lett. 2008, 33, 1303–1305. [Google Scholar] [CrossRef] [PubMed]
- Shobha, S.; Alexander, B.; Hongsub, J.; Rui, H.; Ryszard, B.; Yong-Kyu, Y.; Paras, N.P. Large-Area, Near-Infrared (IR) Photonic Crystals with Colloidal Gold Nanoparticles Embedding. ACS Appl. Mater. Interfaces 2010, 2, 1242–1246. [Google Scholar]
- Jang, J.H.; Ullal, C.K.; Maldovan, M.; Gorishnyy, T.; Kooi, S.; Koh, C.; Thomas, E.L. 3D Micro- and Nanostructures via Interference Lithography. Adv. Funct. Mater. 2007, 17, 3027–3041. [Google Scholar] [CrossRef]
- Chuang, Y.-J.; Tseng, F.-G.; Cheng, J.-H.; Lin, W.-K. A novel fabrication method of embedded micro-channels by using SU-8 thick-film photoresists. Sens. Actuatord A 2003, 103, 64–69. [Google Scholar] [CrossRef]
- Wu, S.; Serbin, J.; Gu, M. Two-photon polymerisation for three-dimensional micro-fabrication. J. Photochem. Photobiol. A 2006, 181, 1–11. [Google Scholar] [CrossRef]
- Satoshi, K.; Hong-Bo, S.; Tomokazu, T.; Kenji, T. Finer features for functional microdevices. Nature 2001, 412, 697–698. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jee, H.; Park, M.-J.; Jeon, K.; Jeong, C.; Lee, J. Combining Interference Lithography and Two-Photon Lithography for Fabricating Large-Area Photonic Crystal Structures with Controlled Defects. Appl. Sci. 2021, 11, 6559. https://doi.org/10.3390/app11146559
Jee H, Park M-J, Jeon K, Jeong C, Lee J. Combining Interference Lithography and Two-Photon Lithography for Fabricating Large-Area Photonic Crystal Structures with Controlled Defects. Applied Sciences. 2021; 11(14):6559. https://doi.org/10.3390/app11146559
Chicago/Turabian StyleJee, Hongsub, Min-Joon Park, Kiseok Jeon, Chaehwan Jeong, and Jaehyeong Lee. 2021. "Combining Interference Lithography and Two-Photon Lithography for Fabricating Large-Area Photonic Crystal Structures with Controlled Defects" Applied Sciences 11, no. 14: 6559. https://doi.org/10.3390/app11146559
APA StyleJee, H., Park, M. -J., Jeon, K., Jeong, C., & Lee, J. (2021). Combining Interference Lithography and Two-Photon Lithography for Fabricating Large-Area Photonic Crystal Structures with Controlled Defects. Applied Sciences, 11(14), 6559. https://doi.org/10.3390/app11146559