Modification of Angular Kinematics and Spatiotemporal Parameters during Running after Central and Peripheral Fatigue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol
2.3. Central Fatigue Protocol
2.4. Peripheral Fatigue Protocol
2.5. Data Analysis
2.6. Statistics
3. Results
3.1. Fatigue Effects (Pre vs. Post Fatigue Test)
3.2. Fatigue Type (Central vs. Peripheral)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Junior, L.C.H.; Pillay, J.D.; Van Mechelen, W.; Verhagen, E. Meta-analyses of the effects of habitual running on indices of health in physically inactive adults. Sports Med. 2015, 45, 1455–1468. [Google Scholar] [CrossRef] [Green Version]
- Fields, K.B.; Sykes, J.C.; Walker, K.M.; Jackson, J.C. Prevention of running injuries. Curr. Sports Med. Rep. 2010, 9, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Boccia, G.; Dardanello, D.; Tarperi, C.; Festa, L.; La Torre, A.; Pellegrini, B.; Schena, F.; Rainoldi, A. Women show similar central and peripheral fatigue to men after half-marathon. Eur. J. Sport Sci. 2018, 18, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Martin, V.; Kerhervé, H.; Messonnier, L.A.; Banfi, J.-C.; Geyssant, A.; Bonnefoy, R.; Féasson, L.; Millet, G. Central and peripheral contributions to neuromuscular fatigue induced by a 24 h treadmill run. J. Appl. Physiol. 2010, 108, 1224–1233. [Google Scholar] [CrossRef] [PubMed]
- Nigg, B.M.; Baltich, J.; Hoerzer, S.; Enders, H. Running shoes and running injuries: Mythbusting and a proposal for two new paradigms: “Preferred movement path” and “comfort filter”. Br. J. Sports Med. 2015, 49, 1290–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derrick, T.R. The effects of knee contact angle on impact forces and accelerations. Med. Sci. Sports Exerc. 2004, 36, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Derrick, T.R.; Dereu, D.; McLean, S.P. Impacts and kinematic adjustments during an exhaustive run. Med. Sci. Sports Exerc. 2002, 34, 998–1002. [Google Scholar] [CrossRef]
- Elliott, B.C.; Roberts, A.D. A biomechanical evaluation of the role of fatigue in middle-distance running. J. Can. Sci. Appl. Sport 1980, 5, 203–207. [Google Scholar]
- Kellis, E.; Zafeiridis, A.; Amiridis, I.G. Muscle coactivation before and after the impact phase of running following isokinetic fatigue. J. Athl. Train. 2011, 46, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Maas, E.; De Bie, J.; Vanfleteren, R.; Hoogkamer, W.; Vanwanseele, B. Novice runners show greater changes in kinematics with fatigue compared with competitive runners. Sports Biomech. 2017, 17, 350–360. [Google Scholar] [CrossRef]
- Winter, S.; Gordon, S.; Watt, K. Effects of fatigue on kinematics and kinetics during overground running: A systematic review. J. Sports Med. Phys. Fit. 2016, 57, 887–899. [Google Scholar]
- Willwacher, S.; Sanno, M.; Brüggemann, G.-P. Fatigue matters: An intense 10 km run alters frontal and transverse plane joint kinematics in competitive and recreational adult runners. Gait Posture 2020, 76, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Christina, K.A.; White, S.C.; Gilchrist, L.A. Effect of localized muscle fatigue on vertical ground reaction forces and ankle joint motion during running. Hum. Mov. Sci. 2001, 20, 257–276. [Google Scholar] [CrossRef]
- Fischer, G.; Storniolo, J.L.; Peyré-Tartaruga, L.A. Effects of fatigue on running mechanics: Spring-mass behavior in recreational runners after 60 seconds of countermovement jumps. J. Appl. Biomech. 2015, 31, 445–451. [Google Scholar] [CrossRef]
- Kellis, E.; Liassou, C. The effect of selective muscle fatigue on sagittal lower limb kinematics and muscle activity during level running. J. Orthop. Sports Phys. Ther. 2009, 39, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Rabita, G.; Couturier, A.; Dorel, S.; Hausswirth, C.; Le Meur, Y. Changes in spring-mass behavior and muscle activity during an exhaustive run at O2max. J. Biomech. 2013, 46, 2011–2017. [Google Scholar] [CrossRef] [Green Version]
- Rabita, G.; Slawinski, J.; Girard, O.; Bignet, F.; Hausswirth, C. Spring-mass behavior during exhaustive run at constant velocity in elite triathletes. Med. Sci. Sports Exerc. 2011, 43, 685–692. [Google Scholar] [CrossRef] [Green Version]
- Lucas-Cuevas, A.G.; Priego-Quesada, J.I.; Aparicio, I.; Giménez, J.V.; Llana-Belloch, S.; Pérez-Soriano, P. Effect of 3 weeks use of compression garments on stride and impact shock during a fatiguing run. Int. J. Sports Med. 2015, 36, 826–831. [Google Scholar] [CrossRef]
- Berthon, P.; Fellmann, N.; Bedu, M.; Beaune, B.; Dabonneville, M.; Coudert, J.; Chamoux, A. A 5 min running field test as a measurement of maximal aerobic velocity. Graefe Arch. Clin. Exp. Ophthalmol. 1997, 75, 233–238. [Google Scholar] [CrossRef]
- García-Pérez, J.A.; Pérez-Soriano, P.; Llana-Belloch, S.; Lucas, A.; Sánchez-Zuriaga, D. Effects of treadmill running and fatigue on impact acceleration in distance running. Sports Biomech. 2014, 13, 259–266. [Google Scholar] [CrossRef]
- Doig, G.S.; Simpson, F. Randomization and allocation concealment: A practical guide for researchers. J. Crit. Care 2005, 20, 187–191. [Google Scholar] [CrossRef]
- Lucas, A.; Pérez-Soriano, P.; Llana-Belloch, S.; Macián-Romero, C.; Sánchez-Zuriaga, D. Effect of custom-made and prefabricated insoles on plantar loading parameters during running with and without fatigue. J. Sports Sci. 2014, 32, 1712–1721. [Google Scholar] [CrossRef] [PubMed]
- Nigg, B.M.; De Boer, R.W.; Fisher, V. A kinematic comparison of overground and treadmill running. Med. Sci. Sports Exerc. 1995, 27, 98–105. [Google Scholar] [CrossRef]
- Koblbauer, I.F.; van Schooten, K.S.; Verhagen, E.A.; van Dieën, J.H. Kinematic changes during running-induced fatigue and relations with core endurance in novice runners. J. Sci. Med. Sport 2014, 17, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Soleimanifar, M.; Salavati, M.; Akhbari, B.; Moghadam, M. The interaction between the location of lower extremity muscle fatigue and visual condition on unipedal postural stability. Graefe Arch. Clin. Exp. Ophthalmol. 2012, 112, 3495–3502. [Google Scholar] [CrossRef]
- Ferrari, D.; Briani, R.V.; Silva, D.D.O.; Pazzinatto, M.F.; Ferreira, A.S.; Alves, N.; de Azevedo, F.M. Higher pain level and lower functional capacity are associated with the number of altered kinematics in women with patellofemoral pain. Gait Posture 2018, 60, 268–272. [Google Scholar] [CrossRef]
- Hall, S.J. Angular kinematics of human movement. In Basic Biomechanics; Hall, S.J., Ed.; McGraw-Hill Higher Education: New York, NY, USA, 2015. [Google Scholar]
- Novacheck, T. The biomechanics of running. Gait Posture 1998, 7, 77–95. [Google Scholar] [CrossRef]
- Fellin, R.E.; Rose, W.C.; Royer, T.D.; Davis, I.S. Comparison of methods for kinematic identification of footstrike and toe-off during overground and treadmill running. J. Sci. Med. Sport 2010, 13, 646–650. [Google Scholar] [CrossRef] [Green Version]
- Milner, C.E.; Paquette, M.R. A kinematic method to detect foot contact during running for all foot strike patterns. J. Biomech. 2015, 48, 3502–3505. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Hunter, J.; Schmidt, F. Methods of meta-analysis. In Methods of Meta-Analysis; SAGE Publications: Thousand Oaks, CA, USA, 2004. [Google Scholar]
- Sawilowsky, S.S. New effect size rules of thumb. J. Mod. Appl. Stat. Methods 2009, 8, 597–599. [Google Scholar] [CrossRef]
- Saha, D.; Gard, S.; Fatone, S. The effect of trunk flexion on able-bodied gait. Gait Posture 2008, 27, 653–660. [Google Scholar] [CrossRef]
- Abt, J.P.; Sell, T.C.; Chu, Y.; Lovalekar, M.; Burdett, R.G.; Lephart, S.M. Running kinematics and shock absorption do not change after brief exhaustive running. J. Strength Cond. Res. 2011, 25, 1479–1485. [Google Scholar] [CrossRef] [Green Version]
- Chan-Roper, M.; Hunter, I.; Myrer, J.W.; Eggett, D.L.; Seeley, M.K. Kinematic changes during a marathon for fast and slow runners. J. Sports Sci. Med. 2012, 11, 77–82. [Google Scholar]
- Del Coso, J.; Fernández, D.; Abián-Vicén, J.; Salinero, J.J.; González-Millán, C.; Areces, F.; Ruiz, D.; Gallo, C.; Gonzalez, J.M.C.; Pérez-González, B. Running pace decrease during a marathon is positively related to blood markers of muscle damage. PLoS ONE 2013, 8, e57602. [Google Scholar] [CrossRef]
- Reenalda, J.; Maartens, E.; Buurke, J.H.; Gruber, A.H. Kinematics and shock attenuation during a prolonged run on the athletic track as measured with inertial magnetic measurement units. Gait Posture 2019, 68, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Edwards, W.B.; Derrick, T.R.; Hamill, J. Musculoskeletal attenuation of impact shock in response to knee angle manipulation. J. Appl. Biomech. 2012, 28, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Gerritsen, K.G.; Bogert, A.V.D.; Nigg, B.M. Direct dynamics simulation of the impact phase in heel-toe running. J. Biomech. 1995, 28, 661–668. [Google Scholar] [CrossRef]
- Valiant, G.A. Transmission and attenuation of heelstrike accelerations. In Biomechanics of Distance Running; Cavanagh, P.R., Ed.; Human Kinetics: Champaign, IL, USA, 1990; pp. 225–247. [Google Scholar]
- Shih, Y.; Ho, C.-S.; Shiang, T.-Y. Measuring kinematic changes of the foot using a gyro sensor during intense running. J. Sports Sci. 2013, 32, 550–556. [Google Scholar] [CrossRef]
- Jewell, C.; Boyer, K.A.; Hamill, J. Do footfall patterns in forefoot runners change over an exhaustive run? J. Sports Sci. 2016, 35, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Fourchet, F.; Girard, O.; Kelly, L.; Horobeanu, C.; Millet, G.P. Changes in leg spring behaviour, plantar loading and foot mobility magnitude induced by an exhaustive treadmill run in adolescent middle-distance runners. J. Sci. Med. Sport 2015, 18, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Ogueta-Alday, A.; Morante, J.C.; Gómez-Molina, J.; García-López, J. Similarities and differences among half-marathon runners according to their performance level. PLoS ONE 2018, 13, e0191688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, H.-L.; Powers, C.M. Influence of trunk posture on lower extremity energetics during running. Med. Sci. Sports Exerc. 2015, 47, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.M.; Zifchock, R.A.; Hillstrom, H.J. The effects of limb dominance and fatigue on running biomechanics. Gait Posture 2014, 39, 915–919. [Google Scholar] [CrossRef]
Peripheral Fatigue | Central Fatigue | p Values | |||||||
---|---|---|---|---|---|---|---|---|---|
Pre-Fatigue | Post-Fatigue | ∆ | Pre-Fatigue | Post-Fatigue | ∆ | Fatigue Effect (Pre-Post) | Fatigue Type (Per-Cent) | Interaction | |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | ||||
Initial contact (IC) | |||||||||
Thigh IC (°) | 24.36 ± 0.8 | 24.14 ± 0.75 | −0.22 ± 0.30 | 23.77 ± 0.85 | 24.59 ± 0.98 | 0.82 ± 0.32 * | - | 0.027 | 0.027 |
Knee IC (°) | 12.65 ± 1.22 | 11.71 ± 1.24 | −0.94 ± 0.51 | 12.34 ± 1.40 | 12.56 ± 1.40 | 0.22 ± 0.46 * | - | 0.047 | - |
Shank IC (°) | 3.27 ± 0.75 | 3.93 ± 0.66 | 0.66 ± 0.44 | 3.85 ± 0.57 | 4.45 ± 0.74 ‡ | 0.60 ± 0.36 | 0.035 | - | - |
Ankle IC (°) § | 2.54 ± 1.96 | 3.15 ± 1.90 + | 0.62 ± 0.21 | 0.48 ± 1.67 | 0.84 ± 1.51 † | 0.36 ± 0.69 | 0.000 | 0.011 | - |
Rearfoot IC (°) | −0.71 ± 1.75 | −1.52 ± 1.82 | −0.81 ± 1.10 | −0.50 ± 1.76 | −1.92 ± 1.41 | −1.42 ± 1.44 | - | - | - |
Maximal Knee Flexion (MKF) | |||||||||
Thigh MKF (°) § | 16.43 ± 1.17 | 16.08 ± 1.12 | −0.35 ± 0.37 | 15.61 ± 1.11 | 16.95 ± 1.12 | 1.34 ± 0.33 * | - | 0.008 | - |
Knee MKF (°) | 32.29 ± 1.74 | 32.14 ± 1.72 | −0.15 ± 0.46 | 32.12 ± 1.73 | 33.79 ± 1.68 ‡‡ | 1.67 ± 0.30 * | 0.007 | 0.009 | - |
Shank MKF (°) § | −24.30 ± 0.58 | −24.56 ± 0.50 | −0.26 ± 0.22 | −24.09 ± 0.61 | −24.42 ± 0.64 | −0.33 ± 0.17 | - | - | - |
Ankle MKF (°) § | −11.74 ± 1.84 | −11.33 ± 1.92 | 0.41 ± 0.29 | −13.66 ± 1.21 | −14.11 ± 1.07 † | −0.45 ± 0.56 | - | 0.020 | - |
Rearfoot MKF (°) § | −9.92 ± 2.90 | −10.46 ± 4.01 | −0.54 ± 1.67 | −11.76 ± 1.78 | −13.84 ± 1.44 | −2.08 ± 1.46 | - | - | - |
Toe-Off Instant (TO) | |||||||||
Thigh TO (°) | −17.50 ± 0.92 | −16.86 ± 0.86 | 0.64 ± 0.29 | −18.30 ± 0.83 | −18.48 ± 0.89 | −0.18 ± 0.41 | - | - | - |
Knee TO (°) | 14.33 ± 1.10 | 15.48 ± 1.12 ++ | 1.15 ± 0.38 | 14.32 ± 1.20 | 15.12 ± 1.27 | 0.80 ± 0.44 | 0.010 | - | - |
Shank TO (°) § | −40.27 ± 0.70 | −40.84 ± 0.65 + | −0.57 ± 0.27 | −40.19 ± 0.62 | −41.18 ± 0.70 ‡‡ | −0.98 ± 0.19 | 0.010 | - | - |
Ankle TO (°) | 19.06 ± 1.53 | 19.56 ± 1.48 | 0.49 ± 0.69 | 17.91 ± 1.53 | 19.20 ± 1.67 | 1.29 ± 0.81 | - | - | - |
Rearfoot TO (°) § | 8.20 ± 3.26 | 6.14 ± 5.31 | −2.06 ± 3.37 | 6.48 ± 2.93 | 4.68 ± 3.35 | −1.80 ± 1.53 | - | - | - |
Oscillation Instant (MO) | |||||||||
Thigh MO (°) | 18.76 ± 0.92 | 19.06 ± 0.57 | 0.30 ± 0.59 | 18.00 ± 0.89 | 18.87 ± 0.81 | 0.87 ± 0.81 | - | - | - |
Knee MO (°) | 92.95 ± 2.80 | 92.26 ± 2.28 | −0.69 ± 1.28 | 92.29 ± 2.58 | 93.27 ± 2.41 | 0.97 ± 1.18 | - | - | - |
Shank MO (°) § | −51.05 ± 12.27 | −57.68 ± 12.57 | −6.63 ± 7.65 | −56.31 ± 13.36 | −55.61 ± 13.42 | 0.70 ± 3.50 | - | - | - |
Ankle MO (°) § | 12.75 ± 2.10 | 13.37 ± 2.17 | 0.62 ± 0.57 | 12.35 ± 2.41 | 13.00 ± 1.87 | 0.65 ± 1.29 | - | - | - |
Rearfoot MO (°) | 98.2 ± 18.47 | 103.34 ± 14.92 | 5.14 ± 12.18 | 91.60 ± 20.69 | 107.19 ± 17.37 | 15.59 ± 18.55 | - | - | - |
Peripheral Fatigue | Central Fatigue | |||||
---|---|---|---|---|---|---|
Pre-Fatigue | Post-Fatigue | ∆ | Pre-Fatigue | Post-Fatigue | ∆ | |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
Stride Frequency (Hz) | 177.18 ± 2.48 | 176.65 ± 2.47 | −0.526 ± 0.959 | 176.39 ± 2.34 | 174.89 ± 2.14 | −1.503 ± 1.407 |
Stride Length (m) | 2.63 ± 0.145 | 2.63 ± 0.145 | 0.006 ± 0.054 | 2.65 ± 0.143 | 2.68 ± 0.133 | −0.121 ± 0.603 |
Stride Time (s) | 0.679 ± 0.009 | 0.681 ± 0.009 | 0.002 ± 0.004 | 0.682 ± 0.009 | 0.688 ± 0.009 | 0.006 ± 0.005 |
Stance Time (s) § | 0.222 ± 0.005 | 0.223 ± 0.005 | 0.000 ± 0.000 | 0.226 ± 0.004 | 0.232 ± 0.005 ‡,† | 0.010 ± 0.000 |
Swing Time (s) | 0.457 ± 0.009 | 0.459 ± 0.008 | 0.000 ± 0.000 | 0.457 ± 0.008 | 0.456 ± 0.008 | 0.000 ± 0.000 |
Stance Time (%) | 32.71 ± 0.72 | 32.67 ± 0.6 | −0.041 ± 0.28 | 33.13 ± 0.54 | 33.76 ± 0.65 | 0.636 ± 0.283 |
Swing Time (%) | 67.29 ± 0.72 | 67.33 ± 0.6 | 0.041 ± 0.28 | 66.87 ± 0.54 | 66.24 ± 0.65 † | −0.636 ± 0.283 |
Absorption Time (s) | 0.097 ± 0.002 | 0.098 ± 0.003 | 0.001 ± 0.001 | 0.099 ± 0.002 | 0.099 ± 0.003 | 0.000 ± 0.002 |
Propulsion Time (s) | 0.125 ± 0.004 | 0.124 ± 0.004 | −0.001 ± 0.001 | 0.127 ± 0.003 | 0.133 ± 0.004 | 0.007 ± 0.002 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Encarnación-Martínez, A.; Pérez-Soriano, P.; Sanchis-Sanchis, R.; Berenguer-Vidal, R.; García-Gallart, A. Modification of Angular Kinematics and Spatiotemporal Parameters during Running after Central and Peripheral Fatigue. Appl. Sci. 2021, 11, 6610. https://doi.org/10.3390/app11146610
Encarnación-Martínez A, Pérez-Soriano P, Sanchis-Sanchis R, Berenguer-Vidal R, García-Gallart A. Modification of Angular Kinematics and Spatiotemporal Parameters during Running after Central and Peripheral Fatigue. Applied Sciences. 2021; 11(14):6610. https://doi.org/10.3390/app11146610
Chicago/Turabian StyleEncarnación-Martínez, Alberto, Pedro Pérez-Soriano, Roberto Sanchis-Sanchis, Rafael Berenguer-Vidal, and Antonio García-Gallart. 2021. "Modification of Angular Kinematics and Spatiotemporal Parameters during Running after Central and Peripheral Fatigue" Applied Sciences 11, no. 14: 6610. https://doi.org/10.3390/app11146610
APA StyleEncarnación-Martínez, A., Pérez-Soriano, P., Sanchis-Sanchis, R., Berenguer-Vidal, R., & García-Gallart, A. (2021). Modification of Angular Kinematics and Spatiotemporal Parameters during Running after Central and Peripheral Fatigue. Applied Sciences, 11(14), 6610. https://doi.org/10.3390/app11146610