Applications of Advanced Analysis Technologies in Precise Governance of Social Media Rumors
Abstract
:1. Introduction
- (1)
- How to achieve precise governance of social media rumors?
- (2)
- What specific measures and technologies can achieve precise governance?
- (1)
- Reviewing the relevant literature on rumors and clarifying the concept of precise governance of social media rumor.
- (2)
- Summarizing the applications of advanced analysis technologies in social media rumor precise governance and providing insightful ways to achieve precise rumor governance.
2. Literature Mining
2.1. Literature Mining of Rumor Research
- Deleting repetitive articles. A total of eight duplicated publications were identified and eliminated by Endnote.
- Adding missing information. Some literature lack publication year information, for they belong to Early Access publications. We manually added publication year to 26 Early Access articles.
- Excluding irrelevant documents. We found that even though the double quotation marks (“ ”) to perform a precise search, some irrelevant medical literature appeared. We excluded these five irrelevant papers.
2.2. Research Categories of Rumors
2.3. Summary of Literature Mining
3. A Conceptual Framework of Social Media Rumor Precise Governance
3.1. From the Perspective of Rumor
3.2. From the Perspective of Platforms and Agencies
3.3. From the Perspective of Public
4. Applications of Advanced Analysis Technologies in Social Media Rumor Precise Governance
4.1. Applications of Advanced Analysis Technologies in Identification and Monitoring of Large-Scale Spreading and Recurring Social Media False Rumors
4.2. Applications of Advanced Analysis Technologies in Crowd Identification and Classification
4.3. Applications of Advanced Analysis Technologies in Rumor Governance Effectiveness/Capabilities Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sunstein, C. On Rumors: How Falsehoods Spread, Why We Believe Them. Straus and Giroux: What Can Be Done; Farrar: New York, NY, USA, 2009. [Google Scholar]
- Financial Headlines. The 2020 Sunshine Media Workers Conference Was Held, Leading Content Entrepreneurs to a Positive Ecological View. Available online: https://cj.sina.com.cn/articles/view/1704103183/65928d0f0200253ts (accessed on 8 February 2021). (In Chinese).
- Chen, C.; Leydesdorff, L. Patterns of connections and movements in dual—Map overlays: A new method of publication portfolio analysis. J. Assoc. Inf. Sci. Technol. 2014, 65, 334–351. [Google Scholar] [CrossRef] [Green Version]
- Knapp, H.R. Apsychology of Rumor. Public Opin. Q. 1944, 8, 22–37. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, M.; Kumari, M.; Sharma, T.P. Rumors detection, verification and controlling mechanisms in online social networks: A survey. Online Soc. Netw. Media 2019, 14, 100050. [Google Scholar] [CrossRef]
- Pal, A.; Chua, A.Y.K. Analysis of Research on Online Rumors. In Proceedings of the 2019 5th International Conference on Information Management (ICIM), Cambridge, UK, 24–27 March 2019; pp. 108–112. [Google Scholar]
- Li, M.; Wang, X.; Gao, K.; Zhang, S. A survey on information diffusion in online social networks: Models and methods. Information 2017, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Liu, S.; Li, Q.; Xu, G. Prediction and Analysis of Rumour’s Impact on Social Media. In Proceedings of the 2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC), Beijing, China, 28–30 October 2020. [Google Scholar]
- Vega-Oliveros, D.A.; Costa, L.D.F.; Rodrigues, F.A. Influence maximization by rumor spreading on correlated networks through community identification. Commun. Nonlinear Sci. Numer. Simul. 2020, 83, 105094. [Google Scholar] [CrossRef] [Green Version]
- Grinberg, N.; Joseph, K.; Friedland, L.; Swire-Thompson, B.; Lazer, D. Fake news on Twitter during the 2016 US presidential election. Science 2019, 363, 374–378. [Google Scholar] [CrossRef]
- Kwak, N.; Lane, D.S.; Zhu, Q.F.; Lee, S.S.; Weeks, B.E. Political Rumor Communication on Instant Messaging Platforms: Relationships with Political Participation and Knowledge. Int. J. Commun. 2020, 14, 5663–5685. [Google Scholar]
- Jain, A.; Dhar, J.; Gupt, V. Stochastic model of rumor propagation dynamics on homogeneous social network with expert interaction and fluctuations in contact transmissions. Phys. A Stat. Mech. Appl. 2019, 519, 227–236. [Google Scholar] [CrossRef]
- Li, G.; Dong, M.; Ming, L.; Luo, C.; Yu, H.; Hu, X.; Zheng, B. Deep reinforcement learning based ensemble model for rumor tracking. Inf. Syst. 2021, 101772. [Google Scholar] [CrossRef]
- Daley, D.J.; Kendal, D.G. Epidemics and rumors. Nature 1964, 204, 204. [Google Scholar] [CrossRef]
- Maki, D.; Thomson, M. Mathematical Models and Applications; Prentice-Hall: Englewood Cliff, NJ, USA, 1973. [Google Scholar]
- Yang, A.; Huang, X.; Cai, X.; Zhu, X.; Lu, L. ILSR rumor spreading model with degree in complex network. Phys. A Stat. Mech. Appl. 2019, 531, 121807. [Google Scholar] [CrossRef]
- Mathur, A.; Gupta, C.P. Dynamic SEIZ in Online Social Networks: Epidemiological Modeling of Untrue Information. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 577–585. [Google Scholar]
- Zhu, L.; Zhou, M.; Liu, Y.; Zhang, Z. Nonlinear dynamic analysis and optimum control of reaction-diffusion rumor propagation models in both homogeneous and heterogeneous networks. J. Math. Anal. Appl. 2021, 502, 125260. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J. A Dynamic Competition and Predation Model for Rumor and Rumor-Refutation. IEEE Access 2021, 9, 9117–9129. [Google Scholar] [CrossRef]
- Ai, S.; Hong, S.; Zheng, X.; Wang, Y.; Liu, X. CSRT rumor spreading model based on complex network. Int. J. Intell. Syst. 2021. [Google Scholar] [CrossRef]
- Li, J.; Jiang, H.; Yu, Z.; Hu, C. Dynamical analysis of rumor spreading model in homogeneous complex networks. Appl. Math. Comput. 2019, 359, 374–385. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, F.; Guan, G.; Zhang, Z. Modeling the dynamics of rumor diffusion over complex networks. Inf. Sci. 2021, 562, 240–258. [Google Scholar] [CrossRef]
- Xu, F.; Sheng, V.S.; Wang, M. Near real-time topic-driven rumor detection in source microblogs. Knowl. Based Syst. 2020, 207, 106391. [Google Scholar] [CrossRef]
- Nasir, J.A.; Khan, O.S.; Varlamis, I. Fake news detection: A hybrid CNN-RNN based deep learning approach. Int. J. Inf. Manag. Data Insights 2021, 1, 100007. [Google Scholar]
- Huang, Q.; Zhou, C.; Wu, J.; Liu, L.; Wang, B. Deep spatial–temporal structure learning for rumor detection on Twitter. Neural Comput. Appl. 2020, 3, 1–11. [Google Scholar] [CrossRef]
- Yu, K.; Jiang, H.; Li, T.; Han, S.; Wu, X. Data Fusion Oriented Graph Convolution Network Model for Rumor Detection. IEEE Trans. Netw. Serv. Manag. 2020, 17, 2171–2181. [Google Scholar] [CrossRef]
- Kwon, S.; Cha, M.; Jung, K. Rumor Detection over Varying Time Windows. PLoS ONE 2017, 12, e0168344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, W.; Su, S.; Yu, Z. Cross-Lingual Cross-Platform Rumor Verification Pivoting on Multimedia Content. Empirical Methods in Natural Language Processing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018. [Google Scholar]
- Paek, H.; Hove, T. Effective strategies for responding to rumors about risks: The case of radiation-contaminated food in South Korea. Public Relat. Rev. 2019, 45, 101762. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, P.; Li, H.; Sakamoto, Y. Combating rumor spread on social media: The effectiveness of refutation and warning. In Proceedings of the 2015 48th Hawaii International Conference on System Sciences, Kauai, HI, USA, 5–8 January 2015; pp. 2406–2414. [Google Scholar]
- Clayton, K.; Blair, S.; Busam, J.A.; Forstner, S.; Glance, J.; Green, G.; Kawata, A.; Kovvuri, A.; Martin, J.; Morgan, E.; et al. Real Solutions for Fake News? Measuring the Effectiveness of General Warnings and Fact-Check Tags in Reducing Belief in False Stories on Social Media. Political Behav. 2020, 42, 1073–1095. [Google Scholar]
- Lian, Y.; Liu, Y.J.; Dong, X.F. Strategies for controlling false online information during natural disasters: The case of Typhoon Mangkhut in China. Technol. Soc. 2020, 62, 10. [Google Scholar] [CrossRef]
- Trethewey, S.P. Strategies to combat medical misinformation on social media. BMJ 2020, 96, 4–6. [Google Scholar] [CrossRef] [Green Version]
- Farrell, J.; McConnell, K.; Brulle, R. Evidence-based strategies to combat scientific misinformation. Nat. Clim. Chang. 2019, 9, 191–195. [Google Scholar] [CrossRef]
- Li, J.; Song, B.; Luo, C.; Zhang, B.; Wang, S.; Wu, G. Considering Self-media Influence Network Rumor Propagation Model and Control Strategy. In Proceedings of the 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 12–14 June 2020. [Google Scholar]
- Hu, Y.; Pan, Q.; Hou, W.; He, M. Rumor spreading model with the different attitudes towards rumors. Phys. A Stat. Mech. Appl. 2018, 502, 331–344. [Google Scholar] [CrossRef]
- Lu, P. Heterogeneity, judgment, and social trust of agents in rumor spreading. Appl. Math. Comput. 2019, 350, 447–461. [Google Scholar] [CrossRef]
- Del Vicario, M.; Bessi, A.; Zollo, F.; Petroni, F.; Scala, A.; Caldarelli, G.; Stanley, H.E.; Quattrociocchi, W. The spreading of misinformation online. Proc. Natl. Acad. Sci. USA 2016, 113, 554–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Yang, X.; Xi, W. Effects of group arguments on rumor belief and transmission in online communities: An information cascade and group polarization perspective. Inf. Manag. 2018, 55, 441–449. [Google Scholar] [CrossRef]
- Bodaghi, A.; Goliaei, S. A Novel Model for Rumor Spreading on Social Networks with Considering the Influence of Dissenting Opinions. Adv. Complex Syst. 2018, 21, 1850011. [Google Scholar] [CrossRef]
- Xu, H.; Li, T.; Liu, X.; Liu, W.; Dong, J. Spreading dynamics of an online social rumor model with psychological factors on scale-free networks. Phys. A Stat. Mech. Appl. 2019, 525, 234–246. [Google Scholar] [CrossRef]
- Dong, X.; Liu, Y.; Wu, C.; Lian, Y.; Tang, D. A double-identity rumor spreading model. Phys. A Stat. Mech. Appl. 2019, 528, 121479. [Google Scholar] [CrossRef]
- Qiu, X.; Zhao, L.; Wang, J.; Wang, X.; Wang, Q. Effects of time-dependent diffusion behaviors on the rumor spreading in social networks. Phys. Lett. A 2016, 380, 2054–2063. [Google Scholar] [CrossRef]
- Rosnow, R.L. On rumor. J. Commun. 1974, 24, 26–38. [Google Scholar] [CrossRef]
- Chorus, A. The basic law of rumor. J. Abnorm. Soc. Psychol. 1952, 48, 313–314. [Google Scholar] [CrossRef]
- Aronson, E. The Social Animal; Worth Publishers: New York, NY, USA, 1999. [Google Scholar]
- Popenoe, D. Sociology; Prentice Hall: Englewood Cliffs, NJ, USA, 1995. [Google Scholar]
- Myilsamy, K.; Kumar, M.S.; Kumar, A.S. Optimal control of a rumor model with group propagation over complex networks. Int. J. Mod. Phys. C 2021, 32, 27. [Google Scholar] [CrossRef]
- Tripathy, R.M.; Bagchi, A.; Mehta, S. Towards combating rumors in social networks: Models and metrics. Intell. Data Anal. 2013, 17, 149–175. [Google Scholar] [CrossRef]
- Liang, J.; Yang, M. On spreading and controlling of online rumors in we-media era. Asian Cult. Hist. 2015, 7, 42. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Li, Z. Internet Public Opinion Management in Big Data Era. In Proceedings of the 2018 5th International Conference on Education, Management, Arts, Economics and Social Science (ICEMAESS 2018), Sanya, China, 10 November–11 November 2018; pp. 1165–1169. [Google Scholar]
- Mei, Y.; Tu, Y.; Xie, K.; Ye, Y.; Shen, W. Internet Public Opinion Risk Grading under Emergency Event Based on AHPSort II-DEMATEL. Sustainability 2019, 11, 4440. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.J.; Shao, X.G.; Huang, W.M. Research on the Early-Warning Model of Network Public Opinion of Major Emergencies. IEEE Access 2021, 9, 44162–44172. [Google Scholar]
- Skoric, M.M.; Liu, J.; Jaidka, K. Electoral and Public Opinion Forecasts with Social Media Data: A Meta-Analysis. Information 2020, 11, 187. [Google Scholar] [CrossRef] [Green Version]
- Cotfas, L.A.; Delcea, C.; Roxin, I.; Ioanăş, C.; Gherai, D.S.; Tajariol, F. The Longest Month: Analyzing COVID-19 Vaccination Opinions Dynamics from Tweets in the Month Following the First Vaccine Announcement. IEEE Access 2021, 9, 33203–33223. [Google Scholar] [CrossRef]
- D’Andrea, E.; Ducange, P.; Bechini, A.; Renda, A.; Marcelloni, F. Monitoring the public opinion about the vaccination topic from tweets analysis. Expert Syst. Appl. 2019, 116, 209–226. [Google Scholar] [CrossRef]
- Ma, X.; Liu, W.; Zhou, X.; Qin, C.; Chen, Y.; Xiang, Y.; Zhang, X.; Zhao, M. Evolution of online public opinion during meteorological disasters. Environ. Hazards 2020, 19, 375–397. [Google Scholar] [CrossRef]
- Chakraborty, K.; Bhatia, S.; Bhattacharyya, S.; Platos, J.; Bag, R.; Hassanien, A.E. Sentiment Analysis of COVID-19 tweets by Deep Learning Classifiers-A study to show how popularity is affecting accuracy in social media. Appl. Soft Comput. 2020, 97, 14. [Google Scholar] [CrossRef] [PubMed]
- Aldiansyah, M.R.; Sasongko, P.S. Twitter Sentiment Analysis About Public Opinion on 4G Smartfren Network Services Using Convolutional Neural Network. In Proceedings of the 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS), Semarang, Indonesia, 29–30 October 2019; pp. 1–6. [Google Scholar]
- Wang, Z.; Guo, Y. Rumor Events Detection Enhanced by Encoding Sentimental Information into Time Series Division and Word Representations. Neurocomputing 2020, 397, 224–243. [Google Scholar] [CrossRef]
- Kotteti, C.; Dong, X.; Qian, L. Ensemble Deep Learning on Time-Series Representation of Tweets for Rumor Detection in Social Media. Appl. Sci. 2020, 10, 7541. [Google Scholar] [CrossRef]
- Tu, K.; Chen, C.; Hou, C.; Yuan, J.; Li, J.; Yuan, X. Rumor2vec: A Rumor Detection Framework with Joint Text and Propagation Structure Representation Learning. Inf. Sci. 2021, 560, 137–151. [Google Scholar] [CrossRef]
- Vosoughi, S.; Deb, R.; Sinan, A. The spread of true and false news online. Science 2018, 359, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Lewandowsky, S.; Ecker, U.K.; Seifert, C.M.; Schwarz, N.; Cook, J. Misinformation and Its Correction: Continued Influence and Successful Debiasing. Psychol. Sci. Public Interest 2012, 13, 106–131. [Google Scholar] [CrossRef]
- Indu, V.; Thampi, S.M. A nature—Inspired approach based on Forest Fire model for modeling rumor propagation in social networks—Science Direct. J. Netw. Comput. Appl. 2019, 125, 28–41. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q.; Wang, Y.; Wang, S. Social Media Rumor Refuter Feature Analysis and Crowd Identification Based on XGBoost and NLP. Appl. Sci. 2020, 10, 4711. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q.; Du, X.; Ma, Y.; Wang, S. Social media rumor refutation effectiveness: Evaluation, modelling and enhancement. Inf. Process. Manag. 2021, 58, 102420. [Google Scholar] [CrossRef]
Number | Categories | Research Directions, Technologies, and Representative Literature | Research Object |
---|---|---|---|
1 | Rumor influence | Rumor | |
2 | Rumor diffusion/ propagation model | ||
3 | Identification or detection of rumors |
| |
4 | Rumor prevention/ governance | Platforms and agencies | |
5 | Factors of rumor spreading |
| Public |
6 | The generation of rumors |
| |
7 | The social psychology of rumor spreading |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Ou, L.; Zhao, Y.; Zhang, Q.; Li, Z. Applications of Advanced Analysis Technologies in Precise Governance of Social Media Rumors. Appl. Sci. 2021, 11, 6726. https://doi.org/10.3390/app11156726
Du X, Ou L, Zhao Y, Zhang Q, Li Z. Applications of Advanced Analysis Technologies in Precise Governance of Social Media Rumors. Applied Sciences. 2021; 11(15):6726. https://doi.org/10.3390/app11156726
Chicago/Turabian StyleDu, Xinyu, Limei Ou, Ye Zhao, Qi Zhang, and Zongmin Li. 2021. "Applications of Advanced Analysis Technologies in Precise Governance of Social Media Rumors" Applied Sciences 11, no. 15: 6726. https://doi.org/10.3390/app11156726
APA StyleDu, X., Ou, L., Zhao, Y., Zhang, Q., & Li, Z. (2021). Applications of Advanced Analysis Technologies in Precise Governance of Social Media Rumors. Applied Sciences, 11(15), 6726. https://doi.org/10.3390/app11156726