Vertical to Horizontal UHS Ratios for Low to Medium Seismicity Regions with Deep Soil atop Deep Geological Sediments—An Example of the City of Osijek, Croatia
Abstract
:1. Introduction
2. Empirical Frequency-Dependent Scaling Equations for Vertical Ground Motion
3. Vertical to Horizontal PSA Ratios
4. Uniform Hazard Spectra Calculations for Vertical Strong Ground Motion
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eurocode 8: Design of Structures for Earthquake Resistance—Part I: General Rules, Seismic Actions and Rules for Buildings; EC8, EN 1998-1:2004; CEN—European Committee for Standardization: Brussels, Belgium, 2004.
- Hrvatski Zavod za Norme: HRN EN 1998-1:2011/NA:2011. Eurocode 8: Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for Buildings—National Annex; Hrvatski Zavod za Norme: Zagreb, Croatia, 2011. [Google Scholar]
- Nogoshi, M.; Igarashi, T. On the amplitude characteristics of microtremor. Seismol. Soc. Jpn. 1971, 24, 26–40. [Google Scholar]
- Nakamura, Y. A Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor on the Ground Surface; Quaterly Report of the Railway Technical Research Institue: Tokyo, Japan, 1971; Volume 30, pp. 25–30. [Google Scholar]
- Nakamura, Y. Real-time information systems for hazards mitigation. In Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico, 23–28 June 1996. [Google Scholar]
- Nakamura, Y. Clear identification of fundamental idea of Nakamura’s technique and its applications. In Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 30 January–4 February 2000. [Google Scholar]
- Bonnefoy-Claudet, S.; Köhler, A.; Cornou, C.; Wathelet, M.; Bard, P.-Y. Effects of Love Waves on Microtremor H/V Ratio. Bull. Seismol. Soc. Am. 2008, 98, 288–300. [Google Scholar] [CrossRef]
- Rong, M.; Fu, L.-Y.; Wang, Z.; LI, X.; Carpenter, N.S.; Woolery, N.S.; Lyu, Y. On the Amplitude Discrepancy of HVSR and Site Amplification from Strong-Motion Observations. Bull. Seismol. Soc. Am. 2017, 170, 2873–2884. [Google Scholar] [CrossRef]
- Imposa, S.; Lombardo, G.; Panzera, F.; Grassi, S. Ambient Vibrations Measurements and 1D Site Response Modelling as a Tool for Soil and Building Properties Investigation. Geosciences 2018, 8, 87. [Google Scholar] [CrossRef] [Green Version]
- Mucciarelli, M. Reliability and applicability of Nakamura’s technique using microtremors: An experimental approach. J. Earthq. Eng. 1998, 2, 625–638. [Google Scholar] [CrossRef]
- Del Gaudio, V.; Wasowski, J.; Muscillo, S. New developments in ambient noise analysis to characterise the seismic response of landslide-prone slopes. Nat. Hazards Earth Syst. Sci. 2013, 13, 2075–2087. [Google Scholar] [CrossRef] [Green Version]
- Seed, H.B.; Ugas, C.; Lysmer, J. Site-dependent spectra for earthquake-resistant design. Bull. Seismol. Soc. Am. 1976, 66, 221–243. [Google Scholar]
- Seed, H.B.; Murarka, R.; Lysmer, J.; Idriss, I.M. Relationships of maximum acceleration, maximum velocity, distance from source, and local site conditions for moderately strong earthquakes. Bull. Seismol. Soc. Am. 1976, 66, 1323–1342. [Google Scholar]
- Trifunac, M.D.; Brady, A.G. On the correlation of seismic intensity scales with the peaks of recording strong ground motion. Bull. Seismol. Soc. Am. 1975, 65, 139–162. [Google Scholar]
- Lee, V.W. Influence of Local Soil and Geologic Site Conditions on Pseudo Relative Velocity Spectrum Amplitudes of Recorded Strong Motion Accelerations; Report No. 87-06; Department of Civil Engineering, University of Southern California: Los Angeles, CA, USA, 1987. [Google Scholar]
- Lee, V.W.; Manić, M.I. Empirical scaling of response spectra in former Yugoslavia. In Proceedings of the 10th European Conference on Earthquake Engineering, Vienna, Austria, 28 August–2 September 1994; pp. 2567–2572. [Google Scholar]
- Bulajić, B.; Pavić, G.; Hadzima-Nyarko, M. PGA vertical estimates for deep soils and deep geological sediments—A case study of Osijek (Croatia). Comput. Geosci. accepted.
- Bulajić, B.; Hadzima-Nyarko, M.; Pavić, G. Horizontal strong motion UHS amplitudes for low to medium seismicity regions with deep soil atop deep geological sediments—An example of the city of Osijek, Croatia. Appl. Sci. 2021, 11, 6296. [Google Scholar] [CrossRef]
- Gulerce, Z.; Kamai, R.; Abrahamson, N.A.; Silva, W.J. Ground motion prediction equations for the vertical ground motion component based on the NGA-W2 database. Earthq. Spectra 2017, 33, 499–528. [Google Scholar] [CrossRef]
- Kalkan, E.; Gulkan, H.P. Empirical attenuation equations for vertical ground motion in Turkey. Earthq. Spectra 2004, 20, 853–882. [Google Scholar] [CrossRef]
- Kamai, R.; Abrahamson, N.A.; Silva, W.J. VS30 in the NGA GMPEs; regional differences and suggested practice. Earthq. Spectra 2016, 32, 2083–2108. [Google Scholar] [CrossRef]
- Bozorgnia, Y.; Campbell, K.W. Vertical ground motion model for PGA, PGV, and linear response spectra using the NGA-West2 database. Earthq. Spectra 2016, 32, 979–1004. [Google Scholar] [CrossRef]
- Campbell, K.W. Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra. Seismol. Res. Lett. 1997, 68, 154–179. [Google Scholar] [CrossRef]
- Bulajić, B.Đ.; Manić, M.I.; Lađinović, Đ. Effects of shallow and deep geology on seismic hazard estimates—a case study of pseudo-acceleration response spectra for the north-western Balkans. Nat. Hazards 2013, 69, 573–588. [Google Scholar] [CrossRef]
- Manić, M.I.; Bulajić, B.Đ.; Trifunac, M.D. A note on peak accelerations computed from sliding of objects during the 1969 Banja Luka earthquakes in former Yugoslavia. Soil Dyn. Earthq. Eng. 2015, 77, 164–176. [Google Scholar] [CrossRef]
- Bulajić, B.Đ.; Bajić, S.; Stojnić, N. The effects of geological surroundings on earthquake-induced snow avalanche prone areas in the Kopaonik region. Cold. Reg. Sci. Technol. 2018, 149, 29–45. [Google Scholar] [CrossRef]
- Lee, V.W.; Trifunac, M.D.; Bulajić, B.Đ.; Manić, M.I. A preliminary empirical model for frequency-dependent attenuation of Fourier amplitude spectra in Serbia from the Vrancea earthquakes. Soil Dyn. Earthq. Eng. 2016, 83, 167–179. [Google Scholar] [CrossRef]
- Lee, V.W.; Trifunac, M.D.; Bulajić, B.Đ.; Manić, M.I. Preliminary empirical scaling of pseudo relative velocity spectra in Serbia from the Vrancea earthquakes. Soil Dyn. Earthq. Eng. 2016, 86, 41–54. [Google Scholar] [CrossRef]
- Lee, V.W.; Trifunac, M.D.; Bulajić, B.Đ.; Manić, M.I.; Herak, D.; Herak, M.; Dimov, G. Seismic microzoning in Skopje, Macedonia. Soil Dyn. Earthq. Eng. 2017, 98, 166–182. [Google Scholar] [CrossRef] [Green Version]
- Lee, V.W.; Trifunac, M.D.; Bulajić, B.Đ.; Manić, M.I.; Herak, D.; Herak, M.; Dimov, G.; Gičev, V. Seismic microzoning of Štip in Macedonia. Soil Dyn. Earthq. Eng. 2017, 98, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Lee, V.W.; Trifunac, M.D.; Bulajić, B.Đ.; Manić, M.I.; Herak, D.; Herak, M. Seismic microzoning of Belgrade. Soil Dyn. Earthq. Eng. 2017, 97, 395–412. [Google Scholar] [CrossRef]
- Jordanovski, L.R.; Lee, V.W.; Manić, M.I.; Olumčeva, T.; Sinadnovski, C.; Todorovska, M.I.; Trifunac, M.D. Strong Earthquake Ground Motion Data in EQINFOS: Yugoslavia. Part I; Report No. 87-05; Department of Civil Engineering, University of Southern California: Los Angeles, CA, USA, 1987. [Google Scholar]
- Ambraseys, N.; Douglas, J.; Margaris, B.; Sigbjörnsson, R.; Smit, P.; Suhadolc, P. Internet site for European strong motion data. In Proceedings of the 12th European Conference on Earthquake Engineering, London, UK, 9–13 September 2002; p. 837. [Google Scholar]
- Ambraseys, N.; Douglas, J.; Margaris, B.; Sigbjörnsson, R.; Berge-Thierry, C.; Suhadolc, P.; Costa, G.; Smit, P. Dissemination of European strong-motion data. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004; Volume 2, p. 32. [Google Scholar]
- Accelerograms Recorded during 10 March 2010 Peć and 3 November 2010 Kraljevo Earthquakes. Seismological Survey of Serbia, Republic of Serbia. 2021. Available online: http://www.seismo.gov.rs/O%20zavodu/Infol.htm (accessed on 21 May 2021).
- Lee, V.W.; Trifunac, M.D. Empirical scaling of Fourier amplitude spectra in former Yugoslavia. Eur. Earthq. Eng. 1993, 7, 47–61. [Google Scholar]
- Trifunac, M.D.; Lee, V.W.; Živčić, M.; Manić, M.I. On the correlation of Mercalli-Cancani-Sieberg intensity scale in Yugoslavia with the peaks of recorded strong earthquake ground motion. Eur. Earthq. Eng 1991, 5/1, 27–33. [Google Scholar]
- Chioccarelli, E.; Cito, P.; Iervolino, I.; Giorgio, M. REASSESS V2.0: Software for single- and multi-site probabilistic seismic hazard analysis. Bull Earthq. Eng. 2019, 17, 1769–1793. [Google Scholar] [CrossRef]
- Amaro-Mellado, J.L.; Melgar-García, L.; Rubio-Escudero, C.; Gutiérrez-Avilés, D. Generating a seismogenic source zone model for the Pyrenees: A GIS-assisted triclustering approach. Comput. Geosci. 2021, 150, 104736. [Google Scholar] [CrossRef]
- Amaro-Mellado, J.L.; Morales-Esteban, A.; Asencio-Cortés, G.; Martínez-Álvarez, F. Comparing seismic parameters for different source zone models in the Iberian Peninsula. Tectonophysics 2017, 717, 449–472. [Google Scholar] [CrossRef]
- Amaro-Mellado, J.L.; Tien Bui, D. GIS-Based Mapping of Seismic Parameters for the Pyrenees. ISPRS Int. J. Geo-Inf. 2020, 9, 452. [Google Scholar] [CrossRef]
- Giardini, D.; Woessner, J.; Danciu, L.; Crowley, H.; Cotton, F.; Grünthal, G.; Pinho, R.; Valensise, L.; SHARE Consort. European Seismic Hazard Map for Peak Ground Acceleration, 10% Exceedance Probabilities in 50 Years; Swiss Seismological Service: Zurich, Switzerland, 2013; ISBN 13 978-92-79-25148-1. [Google Scholar] [CrossRef]
- Wössner, J.; Laurentiu, D.; Giardini, D.; Crowley, H.; Cotton, F.; Grünthal, G.; Valensise, G.; Arvidsson, R.; Basili, R.; Demircioglu, M.B.; et al. The 2013 European Seismic Hazard Model: Key components and results. Bull. Earthq. Eng. 2015, 13, 3553–3596. [Google Scholar] [CrossRef] [Green Version]
- Pagani, M.; Garcia-Pelaez, J.; Gee, R.; Johnson, K.; Poggi, V.; Styron, R.; Weatherill, G.; Simionato, M.; Viganò, D.; Danciu, L.; et al. Global Earthquake Model (GEM) Seismic Hazard Map (Version 2018.1—December 2018); GEM Foundation: Pavia, Italy, 2018. [Google Scholar] [CrossRef]
- Bazzurro, P.; Cornell, C.A. Disaggregation of seismic hazard. Bull. Seismol. Soc. Am. 1999, 89, 501–520. [Google Scholar]
- Pavić, G.; Hadzima-Nyarko, M.; Bulajić, B. A Contribution to a UHS-based Seismic Risk Assessment in Croatia—A Case Study for the City of Osijek. Sustainability 2020, 12, 1796. [Google Scholar] [CrossRef] [Green Version]
- Pavić, G.; Hadzima-Nyarko, M.; Bulajić, B.; Jurković, Ž. Development of Seismic Vulnerability and Exposure Models—A Case Study of Croatia. Sustainability 2020, 12, 973. [Google Scholar] [CrossRef] [Green Version]
- Miranda, E.; Brzev, S.; Bijelić, N.; Arbanas, Ž.; Bartolac, M.; Jagodnik, V.; Lazarević, D.; Mihalić Arbanas, S.; Zlatović, S.; Acosta, A.; et al. PRJ-2959/StEER-EERI: Petrinja, Croatia December 29, 2020, Mw 6.4 Earthquake; Kijewski-Correa, T., Ed.; Field Research, Joint Reconnaissance Report; DesignSafe: Oakland, CA, USA, 2021; p. 206. Available online: https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published/PRJ-2959/#details-4541797621822058005-242ac118-0001-012 (accessed on 9 June 2021).
- Kaplan, H.; Bilgin, H.; Yilmaz, S.; Binici, H.; Öztas, A. Structural damages of L’Aquila (Italy) earthquake. Nat. Hazards Earth Syst. Sci. 2010, 10, 499–507. [Google Scholar] [CrossRef]
- Inel, M.; Ozmen, H.B.; Bilgin, H. Re-evaluation of building damage during recent earthquakes in Turkey. Eng. Struct. 2008, 30, 412–427. [Google Scholar] [CrossRef]
- Bilgin, H.; Huta, E. Earthquake performance assessment of low and mid-rise buildings: Emphasis on URM buildings in Albania. Eng. Struct. 2018, 14, 412–427. [Google Scholar]
- Işık, E.; Kutanis, M.; Bal, İ.E. Displacement of the Buildings According to Site-Specific Earthquake Spectra. Period. Polytech. Civ. Eng. 2016, 60, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Bilgin, H.; Korini, O. Seismic capacity evaluation of unreinforced masonry residential buildings in Albania. Nat. Hazards Earth Syst. Sci. 2012, 12, 3753–3764. [Google Scholar] [CrossRef]
- Işık, E.; Büyüksaraç, A.; Ekinci, Y.L.; Aydın, M.C.; Harirchian, E. The Effect of Site-Specific Design Spectrum on Earthquake-Building Parameters: A Case Study from the Marmara Region (NW Turkey). Appl. Sci. 2020, 10, 7247. [Google Scholar] [CrossRef]
Type 1 Spectrum: “Most Contributing” Earthquakes with MS > 5.5 | |
Vibration periods, T [s] | Vertical to Horizontal PSA Ratios |
0.00–0.05 | 0.782 × [1 + (η × 3.0−1) × T/0.05]/[1 + (η × 2.5 − 1) × T/0.2] |
0.05–0.15 | 2.348 × η/[1 + (η × 2.5 − 1) × T/0.2] |
0.15–0.20 | 0.352 × η/[1 + (η × 2.5 − 1) × T/0.2]/T |
0.20–0.60 | 0.141/T |
0.60–1.00 | 0.235 |
1.00–2.00 | 0.235/T |
2.00–4.00 | 0.117 |
Type 2 Spectrum: “Most Contributing ” Earthquakes with MS ≤ 5.5 | |
Vibration periods, T [s] | Vertical to Horizontal PSA Ratios |
0.00–0.05 | 0.3 × [1 + (η × 3.0 − 1) × T/0.05]/[1 + (η × 2.5 − 1) × T/0.1] |
0.05–0.10 | 0.9 × η/[1 + (η × 2.5 − 1) × T/0.1] |
0.10–0.15 | 0.36 |
0.15–0.25 | 0.054/T |
0.25–1.00 | 0.216 |
1.00–1.20 | 0.216/T |
1.20–4.00 | 0.18 |
T | c1 | c2 | c3 | R0 | c4 | c5 | c6 | c7 | σlog |
---|---|---|---|---|---|---|---|---|---|
0.050 | −1.399 | 0.364 | −1.326 | 15.2 | 0.136 | 0.052 | −0.090 | −0.021 | 0.264 |
0.075 | −1.006 | 0.371 | −1.484 | 18.4 | 0.143 | 0.074 | −0.104 | −0.055 | 0.272 |
0.100 | −0.774 | 0.377 | −1.551 | 21.6 | 0.183 | 0.090 | −0.170 | −0.181 | 0.267 |
0.150 | −0.974 | 0.396 | −1.486 | 20.2 | 0.201 | 0.107 | −0.219 | −0.178 | 0.271 |
0.200 | −1.408 | 0.449 | −1.493 | 19.9 | 0.188 | 0.111 | −0.080 | −0.041 | 0.272 |
0.300 | −2.214 | 0.482 | −1.265 | 16.7 | 0.172 | 0.088 | 0.093 | 0.083 | 0.259 |
0.400 | −2.902 | 0.533 | −1.093 | 12.5 | 0.109 | 0.046 | 0.094 | 0.123 | 0.277 |
0.500 | −3.220 | 0.548 | −1.004 | 12.1 | 0.064 | 0.005 | 0.108 | 0.147 | 0.288 |
0.750 | −3.679 | 0.554 | −0.852 | 10.8 | 0.034 | −0.064 | 0.068 | 0.161 | 0.303 |
1.000 | −4.058 | 0.550 | −0.702 | 9.3 | 0.008 | −0.095 | 0.050 | 0.140 | 0.301 |
1.500 | −4.322 | 0.531 | −0.637 | 9.6 | −0.017 | −0.175 | 0.052 | 0.142 | 0.298 |
2.000 | −4.504 | 0.534 | −0.662 | 9.8 | −0.044 | −0.278 | 0.037 | 0.147 | 0.308 |
T | c1 | c2 | c3 | R0 | c4 | c5 | c6 | c7 | σlog |
---|---|---|---|---|---|---|---|---|---|
0.050 | −1.023 | 0.342 | −1.440 | 19.7 | 0.167 | 0.068 | −0.065 | −0.025 | 0.276 |
0.075 | −0.471 | 0.346 | −1.660 | 25.4 | 0.174 | 0.091 | −0.079 | −0.061 | 0.285 |
0.100 | −0.137 | 0.353 | −1.776 | 30.5 | 0.212 | 0.107 | −0.144 | −0.188 | 0.278 |
0.150 | −0.382 | 0.372 | −1.690 | 28.1 | 0.216 | 0.124 | −0.198 | −0.182 | 0.282 |
0.200 | −0.868 | 0.425 | −1.674 | 26.9 | 0.202 | 0.126 | −0.059 | −0.043 | 0.283 |
0.300 | −1.786 | 0.458 | −1.392 | 22.5 | 0.183 | 0.096 | 0.112 | 0.081 | 0.272 |
0.400 | −2.615 | 0.508 | −1.149 | 15.2 | 0.105 | 0.046 | 0.107 | 0.127 | 0.288 |
0.500 | −2.985 | 0.527 | −1.045 | 13.9 | 0.060 | −0.001 | 0.120 | 0.152 | 0.296 |
0.750 | −3.482 | 0.533 | −0.874 | 12.0 | 0.025 | −0.070 | 0.077 | 0.168 | 0.310 |
1.000 | −3.903 | 0.531 | −0.708 | 9.3 | −0.007 | −0.088 | 0.056 | 0.148 | 0.306 |
1.500 | −4.236 | 0.516 | −0.629 | 7.9 | −0.019 | −0.170 | 0.064 | 0.149 | 0.300 |
2.000 | −4.416 | 0.519 | −0.656 | 8.5 | −0.041 | −0.282 | 0.049 | 0.154 | 0.311 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulajić, B.Đ.; Hadzima-Nyarko, M.; Pavić, G. Vertical to Horizontal UHS Ratios for Low to Medium Seismicity Regions with Deep Soil atop Deep Geological Sediments—An Example of the City of Osijek, Croatia. Appl. Sci. 2021, 11, 6782. https://doi.org/10.3390/app11156782
Bulajić BĐ, Hadzima-Nyarko M, Pavić G. Vertical to Horizontal UHS Ratios for Low to Medium Seismicity Regions with Deep Soil atop Deep Geological Sediments—An Example of the City of Osijek, Croatia. Applied Sciences. 2021; 11(15):6782. https://doi.org/10.3390/app11156782
Chicago/Turabian StyleBulajić, Borko Đ., Marijana Hadzima-Nyarko, and Gordana Pavić. 2021. "Vertical to Horizontal UHS Ratios for Low to Medium Seismicity Regions with Deep Soil atop Deep Geological Sediments—An Example of the City of Osijek, Croatia" Applied Sciences 11, no. 15: 6782. https://doi.org/10.3390/app11156782
APA StyleBulajić, B. Đ., Hadzima-Nyarko, M., & Pavić, G. (2021). Vertical to Horizontal UHS Ratios for Low to Medium Seismicity Regions with Deep Soil atop Deep Geological Sediments—An Example of the City of Osijek, Croatia. Applied Sciences, 11(15), 6782. https://doi.org/10.3390/app11156782