Evaluation of Marblewood Dust’s (Marmaroxylon racemosum) Effect on Ignition Risk
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- MW dust has more than 65% of particles with a size below 100 μm;
- at the same time, the most numerous group (39.61%) are particles with a size of 100 μm;
- MW dust forms an airborne dust mixture with a minimum initiation temperature of 400 °C at the smallest particle size
- an MW dust layer (5 mm) has a minimum initiation temperature of the ignition source of (°C) <300 °C after 120 s.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gašpercova, S.; Makovicka, O.L. Influence of surface treatment of wood to the flame length and weight loss under load single-flame source. Key Eng. Mater. 2017, 755, 353–359. [Google Scholar] [CrossRef]
- Makovicka Osvaldová, L.; Osvald, A. Flame Retardation of Wood. Adv. Mat. Res. 2013, 690–693, 1331–1334. [Google Scholar]
- Čekovská, H.; Gaff, M.; Osvaldová, L.; Kačík, F.; Kaplan, L.; Kubš, J. Tectona grandis Linn. and its Fire Characteristics Affected by the Thermal Modification of Wood. BioResources 2017, 12, 2805–2817. [Google Scholar] [CrossRef] [Green Version]
- Očkajová, A.; Kučerka, M.; Krišťák, Ľ.; Ružiak, I.; Gaff, M. Efficiency of Sanding Belts for Beech and Oak Sanding. Bioresources 2016, 11, 5242–5254. [Google Scholar] [CrossRef] [Green Version]
- Kadlicová, P.; Gašpercová, S.; Osvaldová, L.M. Monitoring of Weight Loss of Fibreboard during Influence of Flame. Procedia Eng. 2017, 192, 393–398. [Google Scholar] [CrossRef]
- Sujová, A.; Hlaváčková, A.; Šafařík, D. Analysis of the performance of the wood processing industry through ratios. Acta Fac. Xylol. Zvolen 2015, 57, 165–178. (In Slovak) [Google Scholar]
- SAE. Waste Generation in Industry. Available online: https://www.enviroportal.sk/indicator/detail?id=987&print=yes (accessed on 12 December 2019). (In Slovak).
- Očkajová, A.; Kučerka, M.; Krišťák, Ľ.; Igaz, R. Granulometric Analysis of Sanding Dust from Selected Wood Species. Bioresources 2018, 13, 7481–7495. [Google Scholar] [CrossRef]
- Dzurenda, L.; Orlowski, K.A. The effect of thermal modification of ash wood on granularity and homogeneity of sawdust in the sawing process on a sash gang saw prw 15-M in view of its technological usefulness. Drewno 2011, 54, 27–37. [Google Scholar]
- Orlowski, K.A.; Chuchala, D.; Muzinski, T.; Barański, J. The effect of wood drying method on the granularity of sawdust obtained during the sawing using the frame sawing machine. Acta Fac. Xylol. Zvolen 2019, 1, 83–92. [Google Scholar]
- Mračková, E.; Krišťák, Ľ.; Kučerka, M.; Gaff, M.; Gajtanská, M. Creation of Wood Dust during Wood Processing: Size Analysis, Dust Separation, and Occupational Health. Bioresources 2016, 11, 209–222. [Google Scholar] [CrossRef]
- Kuracina, R.; Szabova, Z.; Balog, K. Study of Selected Fire Characteristics of Beech Wood Depending on Particle Size; Wood & Fire Safety, Technical University in Žilina: Žilina, Slovakia, 2020. [Google Scholar]
- Polka, M.; Salamonowicz, Z.; Wolinski, M.; Kukfisz, B. Experimental Analysis of Minimal Ignition Temperatures of a Dust Layer and Clouds on a Heated Surface of Selected Flammable Dusts. Procedia Eng. 2012, 45, 414–423. [Google Scholar] [CrossRef] [Green Version]
- Pędzik, M.; Rogoziński, T.; Majka, J.; Stuper-Szablewska, K.; Antov, P.; Kristak, L.; Kminiak, R.; Kučerka, M. Fine Dust Creation during Hardwood Machine Sanding. Appl. Sci. 2021, 11, 6602. [Google Scholar] [CrossRef]
- Osvaldova, L.M.; Gasparik, M.; Castellanos, J.R.S.; Kadlicova, P.; Cekovska, H. Effect of thermal treatment on selected fire safety features of tropical wood. Commun. Sci. Lett. Univ. Zilina 2018, 20, 3–7. [Google Scholar]
- Mvondo, R.R.N.; Meukam, P.; Jeong, J.; De Sousa Meneses, D.; Nkeng, E.G. Influence of water content on the mechanical and chemical properties of tropical wood species. Results Phys. 2017, 7, 2096–2210. [Google Scholar] [CrossRef]
- Krentowski, J. Disaster of an industrial hall caused by an explosion of wood dust and fire. Eng. Fail. Anal. 2015, 56, 403–411. [Google Scholar] [CrossRef]
- Marková, I.; Monoši, M. Expressions of climatic change in Slovak Republic. Ann. Univ. Paedagog. Crac. Studia Nat. 2020, 5, 145–156. [Google Scholar]
- Mamonova, M.; Reinprecht, L. The impact of natural and artificial weathering on the anatomy of selected tropical hardwoods. IAWA J. 2020, 41, 333–355. [Google Scholar] [CrossRef]
- Vandličková, M.; Marková, I. Ignition of Wood Dust of African Padauk (Pterocarpus soyauxii). In International Scientific Conference on Woods & Fire Safety; Springer: Cham, Switzerland, 2020; pp. 58–65. [Google Scholar]
- Osvaldova, L.M.; Kadlicova, P.; Rychly, J. Fire characteristics of selected tropical woods without and with fire retardant. Coatings 2020, 10, 527. [Google Scholar] [CrossRef]
- Marblewood. The Wood Database. Available online: https://www.wood-database.com/marblewood/ (accessed on 21 March 2020).
- Georgopoulos, J.; Ioannidis, C.; Valanis, A. Assessing the performance of a structured light scanner. In Proceedings of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 2010, XXXVIII, Part 5 Commission V Symposium, Newcastle upon Tyne, UK, 21–24 June 2010; pp. 250–255. [Google Scholar]
- De La Torre-López, M.J.; Dominguez-Vidal, A.; Campos-Suñol, M.J.; Rubio-Domene, R.; Schade, U.; Ayora-Cañada, M.J. Gold in the Alhambra: Study of materials, technologies, and decay processes on decorative gilded plasterwork. J. Raman Spectrosc. 2014, 45, 1052–1058. [Google Scholar] [CrossRef]
- Kim, J.; Noh, B.; Park, J.W. Giving Material Properties to Interactive Objects: A Case Study of Tangible Cube Representing Digital Data. Arch. Des. Res. 2020, 33, 3, 55–72. [Google Scholar] [CrossRef]
- Vivek, V.; Vinod, K.; Sonthwal, K. Effect of Marble Dust Powder & Wood Sawdust Ash on UCS and CBR Values of Soil. Int. J. Innov. Res. Sci. Eng. Technol. 2017, 6, 8. [Google Scholar]
- Longwood, F.R. Present and Potential Commercial Timbers of the Caribbean with Special Reference to the West Indies, The Guianas and British Honduras. Agriculture Handbook No. 207, March 1962; U.S. Deptartment of Agriculture, Forest Service: Washington, DC, USA, 1962.
- Binding, C.; Tudhope, D. Integrating faceted structure into the search process. Adv. Knowl. Organ. 2004, 9, 67–72. [Google Scholar]
- Møller, B. Marble, Tortoiseshell, Wood and Other Materials Created in Paint and Lacquer during the Baroque Period in Denmark. 13th International Symposium on Wood and Furniture Conservation. 2017, pp. 19–32. Available online: http://www.ebenist.org/wp-content/uploads/2017/11/Moller_LR.pdf (accessed on 1 November 2017).
- Cardell, C.; Rodriguez-Simon, L.; Guerra, I.; Sanchez-Navas, A. Analysis of Nasrid polychrome carpentry at the Hall of the Mexuar Palace, Alhambra complex (Granada, Spain), combining microscopic, chromatographic and spectroscopic methods. Archaeometry 2009, 5, 637–657. [Google Scholar] [CrossRef]
- Vandličková, M.; Marková, I.; Makovická Osvaldová, L.; Gašpercová, S. Tropical Wood Dusts—Granulometry, Morfology and Ignition Temperature. Appl. Sci. 2020, 10, 7608. [Google Scholar] [CrossRef]
- STN 49 0103: 1979. Wood. Determination of Moisture Content at Physical and Mechanical Testing; Slovak Technical Normalisation: Bratislava, Slovakia, 1979. (In Slovak)
- ISO 23145-1:2007. Determination of Bulk Density of Ceramic Powders–Part 1: Tap Density; International Organization for Standardization: Geneva, Switzerland, 2007.
- ISO 3310-1:2016. Test Sieves–Technical Requirements and Testing–Part 1: Test Sieves of Metal Wire Cloth; International Organization for Standardization: Geneva, Switzerland, 2016.
- Vandličková, M.; Marková, I.; Osvaldová, L.M.; Gašpercová, S.; Svetlík, J. Evaluation of African padauk (Pterocarpus soyauxii) explosion dust. BioRes 2020, 15, 401–414. [Google Scholar]
- EN 50281-2-1: 2002. Electrical Apparatus for Use in the Presence of Combustible Dust. Part 2-1: Test Methods. Methods for Determining the Minimum Ignition Temperatures of Dust; European Committe for Standartion: Brussels, Belgium, 2002.
- Dastidar, A.G. Chapter Four–Dust explosions: Test methods. Methods Chem. Process Saf. 2019, 3, 71–122. [Google Scholar]
- Turekova, I.; Markova, I. Ignition of Deposited Wood Dust Layer by Selected Sources. Appl. Sci. 2020, 10, 5779. [Google Scholar] [CrossRef]
- Danzi, E.; Marmo, L.; Riccio, D. Minimum Ignition Temperature of layer and cloud dust mixtures. J. Loss Prev. Process Ind. 2015, 36, 326–334. [Google Scholar]
- Marblewood, Wood Turning Pens. Available online: https://www.woodturningpens.com/marblewood/ (accessed on 21 April 2020).
- Marková, I.; Očkajová, A. Assessing the Risk of Wood Dust in the Work and Environment, 1st ed.; Monograph Belainum: Banská Bystrica, Slovakia, 2018. (In Slovak) [Google Scholar]
- Turekova, I.; Turnova, Z.; Harangozo, J.; Kasalova, I.; Chrebet, T. Determination of Ignition Temperature of Organic Dust Layers. Adv. Mater. Res. 2013, 690–693, 1469. [Google Scholar] [CrossRef]
- Lowden, L.A.; Hull, T.R. Flammability behaviour of wood and a review of the methods for its reduction. Fire Sci. Rev. 2013, 2, 4. [Google Scholar]
- Macangus, G.G. Chapter 4—Hazardous Area Installation; Geoff, M.-G., Ed.; Offshore Electrical Engineering Manual, Gulf Professional Publishing: Oxford, UK, 2018; pp. 303–324. [Google Scholar]
- Pastier, M.; Tureková, I.; Turňová, Z.; Harangózo, J. Minimum ignition temperature of wood dust layers. Res. Pap. Fac. Mater. Sci. Technol. Trnava Slovak Univ. Technol. Bratisl. 2013, 21, 127. [Google Scholar] [CrossRef]
- Malmgren, A.; Riley, G. Biomass Power Generation. Compr. Renew. Energy 2012, 5, 27–53. [Google Scholar]
- Mazzoli, A.; Favoni, O. Particle size, size distribution and morphological evaluation of airborne dust particles of diverse woods by Scanning Electron Microscopy and image processing program. Powder Technol. 2012, 225, 65–71. [Google Scholar] [CrossRef]
- Bekhta, P.; Mamoňová, M.; Sedliačik, J.; Novák, I. Anatomical study of short-term thermo-mechanically densified alder wood veneer with low moisture content. Eur. J. Wood Prod. 2016, 74, 643–652. [Google Scholar] [CrossRef]
- Mamoňová, M. Wood Anatomy; Monography; Technical University in Zvolen: Zvolen, Slovakia, 2013. [Google Scholar]
- Longauer, J.; Sujová, E. Selected Properties of Solid Parts, 1st ed.; Monography 9/2000/A; Technical University: Zvolen, Slovakia, 2001. (In Slovak) [Google Scholar]
Dust | Parameters | Sources | ||
---|---|---|---|---|
Density of Raw Wood (kg·m−3) | Average Bulk Density (kg·m−3) | Dust Moisture (%) | ||
oak | 672.86 | 238.01 | 6.00 | [41] |
beech | 686.84 | 189.00 | 6.10 | |
spruce | 446.35 | 77.77 | 7.80 | |
marblewood | 1000.8 | 187.9 | 7.34 |
Fraction Size, MW Dust (μm) | Particle (%) | Minimal Ignition Temperature (°C), Airborne Dust | Minimal Ignition Temperature (°C), 5 mm Dust Layer |
---|---|---|---|
500 | 1.26 ± 0.244 | 420 | 305 Temperature of ignition source (°C) <300 °C, Experimental time 120 s |
315 | 5.33 ± 0.591 | 420 | |
200 | 27.31 ± 0.462 | 420 | |
100 | 39.61 ± 0.367 | 410 | |
71 | 15.22 ± 0.111 | 400 | |
63 | 5.5 ± 0.383 | 400 | |
<63 | 5.64 ± 0.612 | 400 |
Dust Samples | MIT5 mm Layer | Sources |
---|---|---|
Dust formed when cutting particleboard and fiberboard on the saw | 350 | [45] |
Dust from the forming saw where raw slabs from poplar, spruce, alder, and ash trees are processed | 330 | |
Dust consisting of particles that arise when cutting chipboard | 340 | |
Beech dust | 320 | [13] |
Miscanthus dust | 415 | [46] |
Marblewood dust | 305 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vandličkova, M.; Markova, I.; Holla, K.; Gašpercová, S. Evaluation of Marblewood Dust’s (Marmaroxylon racemosum) Effect on Ignition Risk. Appl. Sci. 2021, 11, 6874. https://doi.org/10.3390/app11156874
Vandličkova M, Markova I, Holla K, Gašpercová S. Evaluation of Marblewood Dust’s (Marmaroxylon racemosum) Effect on Ignition Risk. Applied Sciences. 2021; 11(15):6874. https://doi.org/10.3390/app11156874
Chicago/Turabian StyleVandličkova, Miroslava, Iveta Markova, Katarina Holla, and Stanislava Gašpercová. 2021. "Evaluation of Marblewood Dust’s (Marmaroxylon racemosum) Effect on Ignition Risk" Applied Sciences 11, no. 15: 6874. https://doi.org/10.3390/app11156874
APA StyleVandličkova, M., Markova, I., Holla, K., & Gašpercová, S. (2021). Evaluation of Marblewood Dust’s (Marmaroxylon racemosum) Effect on Ignition Risk. Applied Sciences, 11(15), 6874. https://doi.org/10.3390/app11156874