The Administration of Probiotics against Hypercholesterolemia: A Systematic Review
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
Authors | Type of the Study | Probiotics Used | Duration | Dose | Study Subjects | The Outcome of the Study |
---|---|---|---|---|---|---|
Ruscica et al., 2019 [40] | RCT | Lactoflorene Colesterolo® | 12 weeks | 1 sachet/day | Low CVD risk and LDL-c (130–200 mg/dL) subjects; 17 females, 16 males; Age = 18–70 years; Probiotic group, n = 16; Placebo group, n = 17 | Improved the proatherogenic lipid profile |
Costabile et al., 2017 [41] | RCT | Lactobacillus plantarum ECGC 13110402 | 12 weeks | 4 × 109 CFU/day | Normal to mild hypercholesterolemic subjects; 34 females, 15 males; Age = 30–65 years; Average BMI = 26.43 kg/m2; Probiotic group, n = 23; Placebo group, n = 23 | Well-tolerated by the subjects, ECGC 13110402 could reduce CVD risk |
Cavallini et al., 2016 [42] | RCT | Isoflavone-supplemented soy product fermented with Enterococcus faecium CRL 183 and Lactobacillus helveticus 416 | 42 days | 11 × 109 CFU/day (or) Probiotics with ~100 mg of total isoflavones | Mild hypercholesterolemic male subjects (TC: > 5.17 mmol/L); Age = 45–48; Probiotic soy product (SP) group, n = 17; Isoflavone supplemented probiotic soy product (ISP) group, n = 17; unfermented soy product (USP) placebo group, n = 15 | Reduced the CVD risk in ISP group |
Ryan et al., 2015 [43] | Pilot | Saccharomyces boulardii var. boulardii CNCM I-1079 | 8 weeks | 5.6 × 1010 CFU twice/day | Hypercholesterolemic subjects; n = 11; 1 female, 10 males; Age = 38.27 ± 8.52 years; Average BMI = 28.02 kg/m2 | Lowered remnant lipoprotein level |
Jones et al., 2013 [44] | RCT | L. reuteri NCIMB 30242 | 9 weeks | 2 × 109 CFU twice/day | Healthy hypercholesterolemic subjects (LDL-c > 3.4 mmol/L; TG < 4.0 mmol/L; Range of BMI = 22–32 kg/m2); Probiotic group, n = 66 (38 females, 28 males; Average age = 50.48 ± 14.03 years); placebo group, n = 61 (34 females, 27 males; Average age = 47.59 ± 12.88 years) | Increased the circulating 25-hydroxyvitamin D in the probiotic group |
Martoni et al., 2015 [46] | Pilot, RCT | Lactobacillus reuteri NCIMB 30242 | 4 weeks | Dose for hypercholesterolemic subjects: 3 × 109 CFU/day for 1st week; 3 × 109 CFU twice/day for 2nd week; 6 × 109 CFU twice/day for 3rd week; 9 × 109 CFU twice/day for 4th week. Dose for healthy normocholesterolemic subjects: 6 × 109 CFU twice/day for 4-week intervention period | Hypercholesterolemic subjects (LDL-C > 3.4 mmol/L, TG < 4.0 mmol/L, Range of BMI = 23.0–32.5 kg/m2 and total BA < 10 mmol/L), n = 10 (males and females between 20–75 years old); Healthy normocholesterolemic male subjects (LDL-C < 3.4 mmol/L, average age = 37.75 ± 8.26 years), n = 4 | Significantly influence bile acids metabolism |
Guardamagna et al., 2014 [47] | RCT | Bifidobacterium animalis spp. lactis MB 2409, B. bifidum MB 109, and B. longum spp. longum BL04 | 12 weeks | 1 × 109 CFU each strain/day | Dyslipidemic children; Probiotic group, n = 37 (22 females, 15 males; Average age = 11.1 ± 1.8 years; Average BMI = 18.9 ± 4.5 kg/m2); placebo group, n = 36 (21 females, 15 males; Average age = 11.4 ± 2.4 years; Average BMI = 19.6 ± 3.4 kg/m2) | Slightly improved the lipid profile in the probiotic group |
Fuentes et al., 2013 [48] | RCT | L. plantarum CECT 7527, L. plantarum CECT 7528 and L. plantarum CECT 7529 | 12 weeks | 1.2 × 109 CFU/day | Hypercholesterolemic subjects (Age = 18–65 years); Probiotic group, n = 30, Average BMI = 25.9 ± 0.45 kg/m2; Placebo group, n = 30, Average BMI = 26.0 ± 0.44 kg/m2 | Reduced the level of TC, LDL-c, and oxidized LDL-c in the probiotic group. Reduced the CVD risk |
Moroti et al., 2012 [49] | RCT | L. acidophilus, Bifidobacterium bifidum, and Oligofructose | 30 days | 108 CFU/mL/200 mL/day; 2 g oligofructose/day | Elderly people with type 2 diabetes mellitus (total cholesterol > 200 mg/dL; TG > 150 mg/dL; glycemia > 110 mg/dL); Synbiotic group, n = 9, Average age = 55.47 ± 2.0 years, Average BMI = 27.70 ± 0.78 kg/m2; Placebo group, n = 9, Average age = 56.89 ± 1.7 years, Average BMI = 28.21 ± 0.85 kg/m2 | Significantly increased the HDL and decreased the glycemia in the synbiotic group. |
Hlivak et al., 2005 [50] | RCT | Enterococcus faecium M-74 and selenium (Se) | 60 weeks | Two × 109 CFU/day; 50 µg of Se | Hypercholesterolemic subjects Probiotic group, n = 20 (17 females, 3 males; Average age = 75.35 ± 1.49 years; Average BMI = 29.40 ± 0.86 kg/m2); placebo group, n = 18 (14 females, 4 males; Average age = 78.05 ± 1.68 years; Average BMI = 29.08 ± 1.14 kg/m2) | Reduced serum cholesterol level in the probiotic group |
Kiessling et al., 2002 [51] | Cross-over study | Control yogurt containing S. thermophilus, L. lactis); Synbiotic (Probiotic Yogurt containing S. thermophilus, L. lactis, L. acidophilus 145, B. longum 913, and oligofructose) | 21 weeks; Group 1 received control yogurt during the 1st period followed by synbiotic during 2nd period followed by control yogurt during 3rd period; Group 2 received control yogurt during the 1st and 2nd period followed by synbiotic during 3rd period; Each period duration is seven weeks. | 300 g/day | Hypercholesterolemic (n = 14 females; Average LDL-C = 5.7 ± 1.6 mmol/L, Average TG = 1.3 ± 0.6 mmol/L, Average BMI = 24.2 ± 2.9 kg/m2, Average TC = 7.6 ± 1.6 mmol/L), and Normocholesterolemic (n = 15 females; Average LDL-C = 4.1 ± 0.4 mmol/L, Average TG = 0.9 ± 0.4 mmol/L, Average BMI = 23.3 ± 3.4 kg/m2, Average TC = 5.7 ± 0.6 mmol/L) subjects; Group 1, n = 18; Group 2, n = 11; | Long term consumption of yogurt (control and synbiotic) of both groups increased the serum HDL-c level |
Ataie-Jafari et al., 2009 [52] | RCT | Probiotic yogurt containing L. acidophilus and Bifidobacterium lactis, S. thermophilus, L. delbrueckii ssp. Bulgaricus; Regular yogurt containing S. thermophilus, L. delbrueckii ssp. Bulgaricus | Six weeks | 3 × 100 g/day | Healthy hypercholesterolemic subjects (Average BMI = 26.1 ± 2.9 kg/m2, TC = 5.68 ± 0.70 mmol/L, LDL-C = 3.60 ± 0.77 mmol/L, TG = 2.26 ± 0.84 mmol/L); Probiotic yogurt group, Ordinary yogurt group; n = 7 (5 females, 2 males) in each group | Significantly reduced the TC level in the probiotic yogurt group |
Xiao et al., 2003 [53] | Pilot study | Control yogurt containing S. thermophilus, L. delbrueckii ssp. Bulgaricus; Probiotic yogurt containing S. thermophilus, L. delbrueckii ssp. Bulgaricus and B. longum BL1 | Four weeks | ~108 CFU/mL of B. longum BL1; 300 mL/day | Healthy moderate hypercholesterolemic male subjects; Control yogurt group, n = 16 (Age = 28–60 years; TC = 223–277 mg/dL); Probiotic yogurt group, n = 16 (Age = 31–59 years; TC = 221–272 mg/dL) | Lowered serum cholesterol level in the probiotic yogurt group |
Larkin et al., 2009 [54] | Cross-over study (study of crossover groups of probiotic cohort or prebiotic cohort) | Soy (S) diet; Probiotic yogurt (PY) containing L. acidophilus, B. bifidum, and Lactobacillus GG; Control yogurt (CY); Prebiotic (resistant starch); | 14 weeks; (2-week wash-in period before the study) two 5-week dietary periods (S + CY, S + PY in probiotic Group 1 and vice versa in probiotic Group 2) (S, S + RS in prebiotic Group 1 and vice versa in prebiotic Group 2) separated by a 4-week washout period | 1 × 108 CFU/day | Mild hypercholesterolemic subjects (men and post-menopausal women) (TC > 5.5 mmol L/1, LDL-c > 3.0 mmol L/1); Age ≥ 45 years; Probiotic group 1 (4 females, 6 males); Probiotic group 2 (2 females, 4 males); Prebiotic group 1 (3 females, 6 males); Prebiotic group 2 (3 females, 3 males) | Significant reduction of TC in probiotic groups. Reduction in TC and LDL-c in prebiotic groups. The lipid-lowering effect observed in probiotic and prebiotic groups are not associated with the involvement of isoflavone |
Greany et al., 2004 [55] | RCT | SPI (or) SPI + L. acidophilus DDS-1, and B. longum (or) MPI (or) MPI + L. acidophilus DDS-1, and B. longum | Six weeks | 109 CFU/day and 26 ± 5 g milk proteins | Healthy mildly hypercholesterolemic (HC) postmenopausal women (n = 25) (TC > 5.17–6.59 mmol/L, 200–255 mg/dL; Average age = 57.8 ± 1.2; Average BMI = 25.7 ± 1.0 kg/m2); Normocholesterolemic (NC) postmenopausal women (n = 12) (TC < 5.17 mmol/L, <200 mg/dL; Average age = 57.0 ± 1.5; Average BMI = 24.7 ± 0.9 kg/m2) subjects; n (based on diet) for both soy protein diet and probiotic diet (HC, n = 48; NC, n = 23), and for both milk protein diet and probiotic free diet (HC, n = 48; NC, n = 24). | Soy protein improved the plasma lipid profile, while probiotic intervention does not show any positive response |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, R.D.; Gidding, S.S.; Hegele, R.A.; Cuchel, M.A.; Barter, P.J.; Watts, G.F.; Baum, S.J.; Catapano, A.L.; Chapman, M.J.; Defesche, J.C.; et al. International atherosclerosis society severe familial hypercholesterolemia panel. Defining severe familial hypercholesterolaemia and the implications for clinical management: A consensus statement from the international atherosclerosis society severe familial hypercholesterolemia panel. Lancet Diabetes Endocrinol. 2016, 4, 850–861, Erratum in 2016, 4, e8. [Google Scholar] [PubMed]
- Iglseder, B.; Moroder, T.; Staffen, W.; Ladurner, G. High prevalence and undertreatment of hypercholesterolaemia in participants in a public stroke prevention programme in Austria. Clin. Drug Investig. 2005, 25, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Koskinas, K.; Wilhelm, M.; Windecker, S. Current treatment of dyslipidaemia: PCSK9 inhibitors and statin intolerance. Swiss Med. Wkly. 2016, 146, w14333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasta, A.; Cremonini, A.L.; Pisciotta, L.; Buscaglia, A.; Porto, I.; Barra, F.; Ferrero, S.; Brunelli, C.; Rosa, G.M. PCSK9 inhibitors for treating hypercholesterolemia. Expert Opin. Pharmacother. 2020, 21, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Karatasakis, A.; Danek, B.A.; Karacsonyi, J.; Rangan, B.V.; Roesle, M.K.; Knickelbine, T.; Miedema, M.D.; Khalili, H.; Ahmad, Z.; Abdullah, S.; et al. Effect of PCSK9 Inhibitors on Clinical Outcomes in Patients with Hypercholesterolemia: A Meta-Analysis of 35 Randomized Controlled Trials. J. Am. Heart Assoc. 2017, 6, e006910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannu, G.S.; Zaman, M.J.; Gupta, A.; Rehman, H.U.; Myint, P.K. Evidence of lifestyle modification in the management of hypercholesterolemia. Curr. Cardiol. Rev. 2013, 9, 2–14. [Google Scholar] [PubMed] [Green Version]
- Chauvin, B.; Drouot, S.; Barrail-Tran, A.; Taburet, A.M. Drug-drug interactions between HMG-CoA reductase inhibitors (statins) and antiviral protease inhibitors. Clin. Pharmacokinet. 2013, 52, 815–831. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.M.Y.; Sattar, N.; McMurray, J.J.V.; Packard, C.J. Statins in the Prevention and Treatment of Heart Failure: A Review of the Evidence. Curr. Atheroscler. Rep. 2019, 21, 41. [Google Scholar] [CrossRef] [Green Version]
- Schimmenti, C.; Sucato, V.; Manzone, E.; Cancellieri, G.; Mortillaro, F.; Novo, G.; Galassi, A.R.; Venturella, F. Bempedoic acid as adjunct for traditional lipid-lowering therapy in patients with hyperlipidaemia. Coron. Artery Dis. 2021, 32, 340–344. [Google Scholar] [CrossRef]
- Jia, X.; Lorenz, P.; Ballantyne, C.M. Poststatin Lipid Therapeutics: A Review. Methodist DeBakey Cardiovasc. J. 2019, 15, 32–38. [Google Scholar]
- Diaconu, C.C.; Iorga, R.A.; Furtunescu, F.; Katsiki, N.; Stoian, A.P.; Rizzo, M. Statin intolerance: New data and further options for treatment. Curr. Opin. Cardiol. 2021, 36, 487–493. [Google Scholar] [CrossRef]
- Barrios, V.; Escobar, C.; Cicero, A.F.; Burke, D.; Fasching, P.; Banach, M.; Bruckert, E. A nutraceutical approach (Armolipid Plus) to reduce total and LDL cholesterol in individuals with mild to moderate dyslipidemia: Review of the clinical evidence. Atheroscler. Suppl. 2017, 24, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selva-O’Callaghan, A.; Alvarado-Cardenas, M.; Pinal-Fernández, I.; Trallero-Araguás, E.; Milisenda, J.C.; Martínez, M.Á.; Marín, A.; Labrador-Horrillo, M.; Juárez, C.; Grau-Junyent, J.M. Statin-induced myalgia and myositis: An update on pathogenesis and clinical recommendations. Expert Rev. Clin. Immunol. 2018, 14, 215–224. [Google Scholar] [CrossRef]
- Li, X.; Lyu, P.; Ren, Y.; An, J.; Dong, Y. Arterial stiffness and cognitive impairment. J. Neurol. Sci. 2017, 380, 1–10. [Google Scholar] [CrossRef]
- Theocharidou, E.; Papademetriou, M.; Reklou, A.; Sachinidis, A.; Boutari, C.; Giouleme, O. The Role of PCSK9 in the Pathogenesis of Non-alcoholic Fatty Liver Disease and the Effect of PCSK9 Inhibitors. Curr. Pharm. Des. 2018, 24, 3654–3657. [Google Scholar] [CrossRef] [PubMed]
- Patwardhan, K. Promoting evidence-base for Ayurveda. J. Ayurveda Integr. Med. 2019, 30391–30392. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, D.; Vohra, R.; Orme-Johnson, D.; Ramaratnam, S.; Schneider, R.H. A Systematic Review and Meta-Analysis of Ayurvedic Herbal Preparations for Hypercholesterolemia. Medicina 2021, 57, 546. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.B.; Vinjamury, S.P.; Der-Martirosian, C.; Kubik, E.; Mishra, L.C.; Shepard, N.P.; Singh, V.J.; Meier, M.; Madhu, S.G. Ayurvedic and collateral herbal treatments for hyperlipidemia: A systematic review of randomized controlled trials and quasi-experimental designs. Altern. Ther. Health Med. 2007, 13, 22–28. [Google Scholar] [PubMed]
- Ried, K.; Toben, C.; Fakler, P. Effect of garlic on serum lipids: An updated meta-analysis. Nutr. Rev. 2013, 71, 282–299. [Google Scholar] [CrossRef]
- Donato, F.; Raffetti, E.; Toninelli, G.; Festa, A.; Scarcella, C.; Castellano, M. TRIGU Project Working Group. Guggulu and Triphala for the Treatment of Hypercholesterolaemia: A Placebo-Controlled, Double-Blind, Randomised Trial. Complement. Med. Res. 2021, 28, 216–225. [Google Scholar] [CrossRef]
- Bent, S. Herbal medicine in the United States: Review of efficacy, safety, and regulation: Grand rounds at University of California, San Francisco Medical Center. J. Gen. Intern. Med. 2008, 23, 854–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cicero, A.F.G.; Fogacci, F.; Banach, M. Red Yeast Rice for Hypercholesterolemia. Methodist DeBakey Cardiovasc. J. 2019, 15, 192–199. [Google Scholar]
- Cicero, A.F.G.; Fogacci, F.; Zambon, A. Red Yeast Rice for Hypercholesterolemia: JACC Focus Seminar. J. Am. Coll. Cardiol. 2021, 77, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Gerards, M.C.; Terlou, R.J.; Yu, H.; Koks, C.H.; Gerdes, V.E. Traditional Chinese lipid-lowering agent red yeast rice results in significant LDL reduction but safety is uncertain—A systematic review and meta-analysis. Atherosclerosis 2015, 240, 415–423. [Google Scholar] [CrossRef] [Green Version]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Sanders, M.E.; Benson, A.; Lebeer, S.; Merenstein, D.J.; Klaenhammer, T.R. Shared mechanisms among probiotic taxa: Implications for general probiotic claims. Curr. Opin. Biotechnol. 2018, 49, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Boix-Amorós, A.; Collado, M.C.; Mira, A. Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front. Microbiol. 2016, 7, 492. [Google Scholar] [CrossRef] [Green Version]
- Logan, A.C.; Katzman, M.A.; Balanzá-Martínez, V. Natural environments, ancestral diets, and microbial ecology: Is there a modern “paleo-deficit disorder”? Part II. J. Physiol. Anthropol. 2015, 34, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, A.; Bekeschus, S.; Bröker, B.M.; Schleibinger, H.; Razavi, B.; Assadian, O. Maintaining health by balancing microbial exposure and prevention of infection: The hygiene hypothesis versus the hypothesis of early immune challenge. J. Hosp. Infect. 2013, 83, S29–S34. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Kim, Y.A.; Keogh, J.B.; Clifton, P.M. Probiotics, prebiotics, synbiotics and insulin sensitivity. Nutr. Res. Rev. 2018, 31, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. A mini-review of human studies on cholesterol-lowering properties of probiotics. Sci. Pharm. 2019, 87, 26. [Google Scholar] [CrossRef] [Green Version]
- Sivamaruthi, B.S.; Fern, L.A.; Rashidah Pg Hj Ismail, D.S.N.; Chaiyasut, C. The influence of probiotics on bile acids in diseases and aging. Biomed. Pharmacother. 2020, 128, 110310. [Google Scholar] [CrossRef] [PubMed]
- Kesika, P.; Sivamaruthi, B.S.; Chaiyasut, C. Do Probiotics Improve the Health Status of Individuals with Diabetes Mellitus? A Review on Outcomes of Clinical Trials. Biomed. Res. Int. 2019, 2019, 1531567. [Google Scholar] [CrossRef] [PubMed]
- Marras, L.; Caputo, M.; Bisicchia, S.; Soato, M.; Bertolino, G.; Vaccaro, S.; Inturri, R. The Role of Bifidobacteria in Predictive and Preventive Medicine: A Focus on Eczema and Hypercholesterolemia. Microorganisms 2021, 9, 836. [Google Scholar] [CrossRef]
- Underwood, M.A. Should we treat every infant with a probiotic? Minerva Pediatr. 2019, 71, 253–262. [Google Scholar] [CrossRef]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. Influence of probiotic supplementation on climacteric symptoms in menopausal women-a mini review. Int. J. Appl. Pharm. 2018, 10, 43–46. [Google Scholar] [CrossRef] [Green Version]
- Hemarajata, P.; Versalovic, J. Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Ther. Adv. Gastroenterol. 2013, 6, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Thushara, R.M.; Gangadaran, S.; Solati, Z.; Moghadasian, M.H. Cardiovascular benefits of probiotics: A review of experimental and clinical studies. Food Funct. 2016, 7, 632–642. [Google Scholar] [CrossRef]
- Ruscica, M.; Pavanello, C.; Gandini, S.; Macchi, C.; Botta, M.; Dall’Orto, D.; Del Puppo, M.; Bertolotti, M.; Bosisio, R.; Mombelli, G.; et al. Nutraceutical approach for the management of cardiovascular risk—A combination containing the probiotic Bifidobacterium longum BB536 and red yeast rice extract: Results from a randomized, double-blind, placebo-controlled study. Nutr. J. 2019, 18, 13. [Google Scholar] [CrossRef]
- Costabile, A.; Buttarazzi, I.; Kolida, S.; Quercia, S.; Baldini, J.; Swann, J.R.; Brigidi, P.; Gibson, G.R. An in vivo assessment of the cholesterol-lowering efficacy of Lactobacillus plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults. PLoS ONE 2017, 12, e0187964. [Google Scholar] [CrossRef]
- Cavallini, D.C.; Manzoni, M.S.; Bedani, R.; Roselino, M.N.; Celiberto, L.S.; Vendramini, R.C.; de Valdez, G.; Abdalla, D.S.; Pinto, R.A.; Rosetto, D.; et al. Probiotic soy product supplemented with isoflavones improves the lipid profile of moderately hypercholesterolemic men: A randomized controlled trial. Nutrients 2016, 8, 52. [Google Scholar] [CrossRef] [Green Version]
- Ryan, J.J.; Hanes, D.A.; Schafer, M.B.; Mikolai, J.; Zwickey, H. Effect of the probiotic saccharomyces boulardii on cholesterol and lipoprotein particles in hypercholesterolemic adults: A single-arm, open-label pilot study. J. Altern. Complement. Med. 2015, 21, 288–293. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.L.; Martoni, C.J.; Prakash, S. Oral supplementation with probiotic L. reuteri NCIMB 30242 increases mean circulating 25-hydroxyvitamin D: A post hoc analysis of a randomized controlled trial. J. Clin. Endocrinol. Metab. 2013, 98, 2944–2951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahrami, A.; Sadeghnia, H.R.; Tabatabaeizadeh, S.A.; Bahrami-Taghanaki, H.; Behboodi, N.; Esmaeili, H.; Ferns, G.A.; Mobarhan, M.G.; Avan, A. Genetic and epigenetic factors influencing vitamin D status. J. Cell Physiol. 2018, 233, 4033–4043. [Google Scholar] [CrossRef] [PubMed]
- Martoni, C.J.; Labbé, A.; Ganopolsky, J.G.; Prakash, S.; Jones, M.L. Changes in bile acids, FGF-19 and sterol absorption in response to bile salt hydrolase active L. reuteri NCIMB 30242. Gut Microbes 2015, 6, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Guardamagna, O.; Amaretti, A.; Puddu, P.E.; Raimondi, S.; Abello, F.; Cagliero, P.; Rossi, M. Bifidobacteria supplementation: Effects on plasma lipid profiles in dyslipidemic children. Nutrition 2014, 30, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, M.C.; Lajo, T.; Carrión, J.M.; Cuñé, J. Cholesterol-lowering efficacy of Lactobacillus plantarum CECT 7527, 7528 and 7529 in hypercholesterolaemic adults. Br. J. Nutr. 2013, 109, 1866–1872. [Google Scholar] [CrossRef] [Green Version]
- Moroti, C.; Souza Magri, L.F.; de Rezende Costa, M.; Cavallini, D.C.; Sivieri, K. Effect of the consumption of a new symbiotic shake on glycemia and cholesterol levels in elderly people with type 2 diabetes mellitus. Lipids Health Dis. 2012, 11, 29. [Google Scholar] [CrossRef] [Green Version]
- Hlivak, P.; Odraska, J.; Ferencik, M.; Ebringer, L.; Jahnova, E.; Mikes, Z. One-year application of probiotic strain Enterococcus faecium M-74 decreases serum cholesterol levels. Bratisl Lek Listy 2005, 106, 67–72. [Google Scholar]
- Kiessling, G.; Schneider, J.; Jahreis, G. Long-term consumption of fermented dairy products over 6 months increases HDL cholesterol. Eur. J. Clin. Nutr. 2002, 56, 843–849. [Google Scholar] [CrossRef] [Green Version]
- Ataie-Jafari, A.; Larijani, B.; Alavi Majd, H.; Tahbaz, F. Cholesterol-lowering effect of probiotic yogurt in comparison with ordinary yogurt in mildly to moderately hypercholesterolemic subjects. Ann. Nutr. Metab. 2009, 54, 22–27. [Google Scholar] [CrossRef]
- Xiao, J.Z.; Kondo, S.; Takahashi, N.; Miyaji, K.; Oshida, K.; Hiramatsu, A.; Iwatsuki, K.; Kokubo, S.; Hosono, A. Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers. J. Dairy Sci. 2003, 86, 2452–2461. [Google Scholar] [CrossRef]
- Larkin, T.A.; Astheimer, L.B.; Price, W.E. Dietary combination of soy with a probiotic or prebiotic food significantly reduces total and LDL cholesterol in mildly hypercholesterolaemic subjects. Eur. J. Clin. Nutr. 2009, 63, 238–245. [Google Scholar] [CrossRef] [Green Version]
- Greany, K.A.; Nettleton, J.A.; Wangen, K.E.; Thomas, W.; Kurzer, M.S. Probiotic consumption does not enhance the cholesterol-lowering effect of soy in postmenopausal women. J. Nutr. 2004, 134, 3277–3283. [Google Scholar] [CrossRef] [PubMed]
- Chaiyasut, C.; Kesika, P.; Sirilun, S.; Peerajan, S.; Sivamaruthi, B.S. Formulation and evaluation of lactic acid bacteria fermented Brassica juncea (Mustard Greens) pickle with cholesterol lowering property. J. Appl. Pharm. Sci. 2018, 8, 033–042. [Google Scholar]
- Davis, H.R.J.; Zhu, L.J.; Hoos, L.M.; Tetzloff, G.; Maguire, M.; Liu, J.; Yao, X.; Iyer, S.P.; Lam, M.H.; Lund, E.G.; et al. Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J. Biol. Chem. 2004, 279, 33586–33592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, L.; Betters, J.L.; Yu, L. Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Annu. Rev. Physiol. 2011, 73, 239–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nashimoto, S.; Yagi, S.; Takeda, N.; Nonaka, M.; Takekuma, Y.; Sugawara, M.; Sato, Y. A new system to evaluate characteristics of Niemann-Pick C1 Like 1-mediated cholesterol transport using Xenopus laevis oocytes. Biochim. Biophys. Acta Biomembr. 2021, 1863, 183508. [Google Scholar] [CrossRef]
- Sanders, M.E.; Akkermans, L.M.; Haller, D.; Hammerman, C.; Heimbach, J.; Hörmannsperger, G.; Huys, G.; Levy, D.D.; Lutgendorff, F.; Mack, D.; et al. Safety assessment of probiotics for human use. Gut Microbes 2010, 1, 164–185. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, D.; Mallappa, R.H.; Grover, S. Comprehensive approaches for assessing the safety of probiotic bacteria. Food Control. 2020, 108, 106872. [Google Scholar] [CrossRef]
- Watanabe, M.; Houten, S.M.; Wang, L.; Moschetta, A.; Mangelsdorf, D.J.; Heyman, R.A.; Moore, D.D.; Auwerx, J. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J. Clin. Investig. 2004, 113, 1408–1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, M.; Houten, S.M.; Mataki, C.; Christoffolete, M.A.; Kim, B.W.; Sato, H.; Messaddeq, N.; Harney, J.W.; Ezaki, O.; Kodama, T.; et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006, 439, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Li, Y.; Sun, H.; Xiao, M.; Zhang, R.L.; Qiu, L.; Tan, B.; Qian, J.M. Correlation between Vitamin D status and gut microbiota in patients with inflammatory bowel disease. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2020, 42, 740–748. [Google Scholar] [PubMed]
- Kanda, N.; Hoashi, T.; Saeki, H. Nutrition and atopic dermatitis. J. Nippon. Med. Sch. 2021, 88, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, M.; Nakano, M. Effects of a mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on cholesterol metabolism in rats fed on a fat- and cholesterol-enriched diet. Br. J. Nutr. 1996, 76, 857–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.H.; Kim, J.G.; Shin, Y.W.; Kim, S.H.; Whang, K.Y. Effect of dietary inclusion of Lactobacillus acidophilus ATCC 43121 on cholesterol metabolism in rats. J. Microbiol. Biotechnol. 2007, 17, 655–662. [Google Scholar] [PubMed]
- Jeun, J.; Kim, S.; Cho, S.Y.; Jun, H.J.; Park, H.J.; Seo, J.G.; Chung, M.J.; Lee, S.J. Hypocholesterolemic effects of Lactobacillus plantarum KCTC3928 by increased bile acid excretion in C57BL/6 mice. Nutrition 2010, 26, 321–330. [Google Scholar] [CrossRef]
- Lew, L.C.; Choi, S.B.; Khoo, B.Y.; Sreenivasan, S.; Ong, K.L.; Liong, M.T. Lactobacillus plantarum DR7 Reduces Cholesterol via Phosphorylation of AMPK That Down-regulated the mRNA Expression of HMG-CoA Reductase. Korean J. Food Sci. Anim. Resour. 2018, 38, 350–361. [Google Scholar] [PubMed]
- Castelli, V.; d’Angelo, M.; Quintiliani, M.; Benedetti, E.; Cifone, M.G.; Cimini, A. The emerging role of probiotics in neurodegenerative diseases: New hope for Parkinson’s disease? Neural Regen. Res. 2021, 16, 628–634. [Google Scholar]
- Sencio, V.; Machado, M.G.; Trottein, F. The lung-gut axis during viral respiratory infections: The impact of gut dysbiosis on secondary disease outcomes. Mucosal Immunol. 2021, 14, 296–304. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivamaruthi, B.S.; Bharathi, M.; Kesika, P.; Suganthy, N.; Chaiyasut, C. The Administration of Probiotics against Hypercholesterolemia: A Systematic Review. Appl. Sci. 2021, 11, 6913. https://doi.org/10.3390/app11156913
Sivamaruthi BS, Bharathi M, Kesika P, Suganthy N, Chaiyasut C. The Administration of Probiotics against Hypercholesterolemia: A Systematic Review. Applied Sciences. 2021; 11(15):6913. https://doi.org/10.3390/app11156913
Chicago/Turabian StyleSivamaruthi, Bhagavathi Sundaram, Muruganantham Bharathi, Periyanaina Kesika, Natarajan Suganthy, and Chaiyavat Chaiyasut. 2021. "The Administration of Probiotics against Hypercholesterolemia: A Systematic Review" Applied Sciences 11, no. 15: 6913. https://doi.org/10.3390/app11156913
APA StyleSivamaruthi, B. S., Bharathi, M., Kesika, P., Suganthy, N., & Chaiyasut, C. (2021). The Administration of Probiotics against Hypercholesterolemia: A Systematic Review. Applied Sciences, 11(15), 6913. https://doi.org/10.3390/app11156913