A Combined Non-Destructive and Micro-Destructive Approach to Solving the Forensic Problems in the Field of Cultural Heritage: Two Case Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study 1: Paintings
2.2. Case Study 2: Bronze Objects
3. Results and Discussion
3.1. Case Study 1: Paintings
3.1.1. Microscopic Observation
3.1.2. Multispectral Imaging Investigations
3.1.3. XRF Analysis
- Lead white [(PbCO3)2 · Pb(OH)2], a natural pigment used since ancient times. This was found both in a mixture in the pictorial layers and in the ground (deducible from the high counts of lead in the dark areas of the pictorial surface and the response obtained in all XRF spectra);
- Vermillion (mercury sulfide, or HgS) has also been used since ancient times. We identified small amounts of it in the mixture for the preparation of the flesh tones, in the red portion, and in the ground or thin primer (probably present in a mixture in very small quantities in the reddish-brown preparation layer, where it was visible even when under the microscope; see Figure 3 and Painting 1 in particular);
- Ochres (iron oxides/hydroxides with clays) are pigments associated with impurities of potassium and manganese oxides typical of natural earth [29]. They are used for brown ground and mixed in red and brown pictorial layers.
3.2. Case Study 2: Bronze Objects
3.2.1. Microscopic Observation
3.2.2. XRF Analysis
3.2.3. SEM-EDX Analysis
3.2.4. FT-IR Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rendle, D.F. X-ray diffraction in forensic science. Rigaku J. 2003, 19, 11–22. [Google Scholar]
- Schreiner, M.; Melcher, M.; Uhlir, K. Scanning electron microscopy and energy dispersive analysis: Applications in the field of cultural heritage. Anal. Bioanal. Chem. 2007, 387, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Svarcovà, S.; Kocì, E.; Bezdicka, P.; Hradi, D.; Hradilovà, J. Evaluation of laboratory powder X-ray micro-diffraction for applications in the fields of cultural heritage and forensic science. Anal. Bioanal. Chem. 2010, 398, 1061–1076. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.L. Principles of Infrared Technology: A Practical Guide to the State of the Art; Springer: Berlin/Heidelberg, Germany, 1994; p. 592. [Google Scholar]
- Brunetti, B.; Miliani, C.; Rosi, F.; Doherty, B.; Monico, L.; Romani, A.; Sgamellotti, A. Non-invasive Investigations of Paintings by Portable Instrumentation: The MOLAB Experience. Top. Curr. Chem. 2016, 374. [Google Scholar] [CrossRef] [Green Version]
- Alfeld, M.; de Viguerie, L. Recent developments in spectroscopic imaging techniques for historical paintings—A review. Spectrochim. Acta-Part B At. Spectrosc. 2017, 136, 81–105. [Google Scholar] [CrossRef]
- Rosi, F.; Cartechini, L.; Sali, D.; Miliani, C. Recent trends in the application of Fourier Transform Infrared (FT-IR) spectroscopy in Heritage Science: From micro- to non-invasive FT-IR. Phys. Sci. Rev. 2019, 4, 4. [Google Scholar] [CrossRef]
- Crocombe, A. (Ed.) Portable Spectroscopy and Spectrometry; Applications; Wiley: Hoboken, NJ, USA, 2021; Volume 2. [Google Scholar]
- Obrutsky, A.; Acosta, D.; Garcia, A.; Scopelliti, J. Non-destructive testing methods used for the study of cultural heritage in Argentina. Insight Non-Destr. Test. Cond. Monit. 2009, 51, 499–503. [Google Scholar] [CrossRef]
- Morgan, R.M.; Bull, P.A. Forensic Geoscience and crime detection. Minerva. Med. Leg. 2007, 127, 73–89. [Google Scholar]
- Ruffell, A.; McKinley, J. Forensic geoscience: Applications of geology, geomorphology and geophysics to criminal investigations. Earth Sci. Rev. 2005, 69, 235–247. [Google Scholar] [CrossRef] [Green Version]
- Vittiglio, G.; Bichlmeier, S.; Klinger, P.; Heckel, J.; Fuzhong, W.; Vincze, L.; Janssens, K.; Engström, P.; Rindby, A.; Dietrich, K.; et al. A compact μ-XRF spectrometer for (in situ) analyses of cultural heritage and forensic materials. Nucl. Instrum. Meth. B 2004, 2013, 693–698. [Google Scholar] [CrossRef]
- Kotrlý, M.; Turková, I.; Grunwaldová, V. Forensic Science Analyses of Cultural Heritage Objects. Microsc Microanal. 2011, 17, 1814–1815. [Google Scholar] [CrossRef] [Green Version]
- Houck, M.; Smith, G.D. The forensic mindset: Art and crime. Forensi. Sci. Int. 2021, 3, 100143. [Google Scholar]
- Fleming, S.J. Authenticity in Art: The Scientific Detection of Forgery; Research Lab for Archaeology; Oxford University: London, UK, 1975; p. 172. [Google Scholar]
- Temiño, I.R.; Yáñez, A.; Jorge-Villar, S.E.; Mateo, Á.R.; Rus, J.R.; Álvarez, J.S.; Berdonces, A.C.L. Forensic Archaeometry Applied to Antiquities Trafficking: The Beginnings of an Investigation at the Frontiers of Knowledge. Arts 2018, 7, 98. [Google Scholar] [CrossRef] [Green Version]
- Hunter, J.; Margaret, C. Forensic Archaeology: Advances in Theory and Practice, 1st ed.; Routledge: London, UK, 2005; p. 256. [Google Scholar]
- Kenneth, P. Geological and Soil Evidence, Forensic Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2007; p. 360. [Google Scholar]
- Bergslien, E. An introduction to Forensic Geoscience, 2nd ed.; Wiley-Blackwell: Buffalo, NY, USA, 2012; p. 472. [Google Scholar]
- Barone, P.M.; Di Maggio, R.M.; Ferrara, C. Forensic Geoscience during CS Investigations and Courtroom Trials without a Murder. JFSC 2016, 4, 302. [Google Scholar]
- Bower, N.W.; Speare, J.O.; Thomas, J.W. Applications of X-RAY Fluorescence-Pattern Recognition in Forensic Archaeometry and Archaeomaterials Analyses. Rigaku J. 1993, 10, 10–21. [Google Scholar]
- Oddo, M.E.; Ricci, P.; Angelici, D.; Fantino, F.; Sibilia, E.; Alberghina, M.F.; Schiavone, S.; Grifa, C.; Mercurio, M.; Germinario, C.; et al. Results of diagnostic campaign promoted by AIAr in the deposits of the Archaeological Museum of Paestum 2018. IOP Conf. Ser. Mater. Sci. Eng. 2018, 364, 012002. [Google Scholar] [CrossRef]
- Southgate, M.T. Tre Puttini Feriti. JAMA 1998, 280. [Google Scholar] [CrossRef]
- Van Asperen De Boer, J.R.J. Reflectography of Paintings Using an Infrared Vidicon Television System. Stud. Conserv. 1969, 14, 96–118. [Google Scholar] [CrossRef]
- Daffara, C.; Fontana, R. Multispectral Infrared Reflectography to Differentiate Features in Paintings. Microsc. Microanal. 2011, 17, 691–695. [Google Scholar] [CrossRef]
- Fontana, R.; Bencini, D.; Carcagnì, P.; Greco, M.; Mastroianni, M.; Materazzi, M.; Pampaloni, E.; Pezzati, L. Multi-spectral IR reflectography. In O3A: Optics for Arts, Architecture, and Archaeology, Proceedings of SPIE Optical Metrology Conference, Munich, Germany, 17–21 June 2007; Fotakis, C., Pezzati, L., Salimbeni, R., Eds.; SPIE (Society of Photo-Optical Instrumentation Engineers): Bellingham, WA, USA, 2007; p. 661808. [Google Scholar]
- Fuster-López, L.; Stols-Witlox, M.; Picollo, M. UV-Vis. Luminescence Imaging Techniques; Editorial Universitat Politècnica de València: Valencia, Spain, 2020; p. 342. [Google Scholar]
- Poldi, G.; Villa, G.C.F. Dalla Conservazione Alla Storia Dell’arte-Riflettografia e Analisi Non Invasive per lo Studio Dei Dipinti, Edizioni Della Normale; Università degli studi di Bergamo: Pisa, Italy, 2006; pp. 91–97. [Google Scholar]
- Cartechini, L.; Miliani, C.; Nodari, L.; Rosi, F.; Tomasin, P. The chemistry of making color in art. J. Cult. Herit. 2021. [Google Scholar] [CrossRef]
- Robbiola, L.; Blengino, J.M.; Fiaud, C. Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys. Corros. Sci. 1998, 40, 2083–2111. [Google Scholar] [CrossRef]
- Hauptmann, A. Provenance Studies. In Archaeometallurgy–Materials Science Aspects. Natural Science in Archaeology; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Oudbashi, O.; Emami, S.M.; Ahmadi, H.; Davami, P. Micro-stratigraphical investigation on corrosion layers in ancient Bronze artefacts by scanning electron microscopy energy dispersive spectrometry and optical microscopy. Herit. Sci. 2013, 1, 21. [Google Scholar] [CrossRef] [Green Version]
- Di Turo, F.; Coletti, F.; De Vivo, C. Investigations on alloy-burial environment interaction of archaeological bronze coins. Microc. J. 2020, 157, 104882. [Google Scholar] [CrossRef]
- Scott, D.A. Metallography and Microstructure of Ancient and Historic Metals; Getty Conservation Institute in association with Archetype Books: Marina del Rey, CA, USA, 1991; ISBN 0-89236-195-6. [Google Scholar]
- Meeks, N. Surface characterization of tinned bronze, high-tin bronze, tinned iron and arsenical bronze. In Metal Plating and Patination; la Niece, S., Craddock, P., Eds.; Butterworth-Heinemann Ltd. Published by Elsevier Ltd.: Amsterdam, The Netherlands, 1993; pp. 247–275. ISBN 9780750616119. [Google Scholar] [CrossRef]
- Ingo, G.M.; Riccucci, C.; Guida, G.; Albini, M.; Giuliani, C.; Di Carlo, G. Rebuilding of the Burial Environment from the Chemical Biography of Archeological Copper-Based Artifacts. ACS Omega 2019, 4, 11103–11111. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.A. Periodic Corrosion Phenomena in Bronze Antiquities. Stud. Conserv. 1985, 30, 49–57. [Google Scholar]
- Hahn, A.; Vogel, H.; Andó, S.; Garzanti, E.; Kuhn, G.; Lantzsch, H.; Schüürman, J.; Vogt, C.; Zabel, M. Using Fourier Transform Infrared Spectroscopy to determine mineral phases in sediments. Sediment. Geol. 2018, 375, 27–35. [Google Scholar] [CrossRef]
- Jung, H.J.; Malek, M.A.; Ryu, J.; Kim, B.; Song, Y.C.; Kim, H.; Ro, C.U. Speciation of individual mineral particles of micrometer size by the combined use of attenuated total reflectance-Fourier transform-infrared imaging and quantitative energy-dispersive electron probe X-ray microanalysis techniques. Anal. Chem. 2010, 82, 6193–6202. [Google Scholar] [CrossRef] [PubMed]
Object ID | Brief Description | Techniques Employed | |
---|---|---|---|
Case study 1 | Painting 1 | cut-out of oil on canvas | IRR, XRF, UV, DOM |
Painting 2 | cut-out of oil on canvas | IRR, XRF, UV, DOM | |
Case study 2 | F1 | fragment of a bronze belt | SEM-EDX, XRF, FT-IR, DOM |
F2 | fragment of a bronze belt | SEM-EDX, XRF, FT-IR, DOM | |
H1 | fragment of a bronze helmet | SEM-EDX, XRF, FT-IR, DOM |
F1 Fragment Element (Weight %) | 1 | 2 | 3 |
---|---|---|---|
Aluminum | 2.5 | 1.6 | 1.4 |
Silicon | 5.9 | 4.2 | 4.1 |
Phosphorus | 0.8 | 0.8 | 0.7 |
Iron | 2.2 | 2.0 | 2.2 |
Copper | 4.2 | 5.0 | 4.5 |
Tin | 84.4 | 86.5 | 87.1 |
F2 Fragment Element (Weight %) | 1 | 2 | 3 |
Aluminum | 0.6 | 0.9 | 14.7 |
Silicon | 4.5 | 5.3 | 4.2 |
Phosphorus | 0.7 | 0.5 | 0.5 |
Iron | 2.0 | 1.8 | 1.8 |
Copper | 7.6 | 8.6 | 6.1 |
Tin | 84.5 | 82.9 | 72.7 |
H1 Fragments Element (Weight %) | 1 | 2 | 3 |
Aluminum | 0.9 | 0.7 | 0.9 |
Silicon | 7.1 | 7.1 | 7.4 |
Calcium | 0.6 | - | - |
Iron | 2.6 | - | - |
Copper | 25.4 | 25.7 | 29.3 |
Tin | 37.8 | 40.3 | 38.1 |
Lead | 25.6 | 26.3 | 24.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricca, M.; Alberghina, M.F.; Randazzo, L.; Schiavone, S.; Donato, A.; Albanese, M.P.; La Russa, M.F. A Combined Non-Destructive and Micro-Destructive Approach to Solving the Forensic Problems in the Field of Cultural Heritage: Two Case Studies. Appl. Sci. 2021, 11, 6951. https://doi.org/10.3390/app11156951
Ricca M, Alberghina MF, Randazzo L, Schiavone S, Donato A, Albanese MP, La Russa MF. A Combined Non-Destructive and Micro-Destructive Approach to Solving the Forensic Problems in the Field of Cultural Heritage: Two Case Studies. Applied Sciences. 2021; 11(15):6951. https://doi.org/10.3390/app11156951
Chicago/Turabian StyleRicca, Michela, Maria F. Alberghina, Luciana Randazzo, Salvatore Schiavone, Antonio Donato, Maria P. Albanese, and Mauro F. La Russa. 2021. "A Combined Non-Destructive and Micro-Destructive Approach to Solving the Forensic Problems in the Field of Cultural Heritage: Two Case Studies" Applied Sciences 11, no. 15: 6951. https://doi.org/10.3390/app11156951
APA StyleRicca, M., Alberghina, M. F., Randazzo, L., Schiavone, S., Donato, A., Albanese, M. P., & La Russa, M. F. (2021). A Combined Non-Destructive and Micro-Destructive Approach to Solving the Forensic Problems in the Field of Cultural Heritage: Two Case Studies. Applied Sciences, 11(15), 6951. https://doi.org/10.3390/app11156951