Effect of Hot-Air Convective Drying on Activity Retention of Amylase and Invertase in Dried Mango of Varieties Sindri, SB Chaunsa, and Tommy Atkins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Drying Experiments
2.3. Enzyme Extraction in Fresh and Dried Mango
2.4. Amylase Activity Assay
2.5. Invertase Activity Assay
2.6. Kinetics Considerations of Amylase and Invertase
2.7. Maltose and Glucose Concentrations in Fresh and Dried Mango
2.8. Statistical Analysis
3. Results and Discussion
3.1. Amylase Activity in Fresh and Dried Samples
3.2. Invertase Activity in Fresh and Dried Samples
3.3. Residual Activity of Amylase and Invertase during Mango Drying
3.4. Reducing Sugar (Maltose and Glucose)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sulistyawati, I.; Verkerk, R. Consumer preference for dried mango attributes: A conjoint study among Dutch, Chinese, and Indonesian consumers. J. Food Sci. 2020, 85, 3527–3535. [Google Scholar] [CrossRef]
- Mukhtar, A.; Latif, S.; Mueller, J. Effect of Heat Exposure on Activity Degradation of Enzymes in Mango Varieties Sindri, SB Chaunsa, and Tommy Atkins during Drying. Molecules 2020, 25, 5396. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Rana, M.M.; Kimura, Y.; Roslan, H.A. Changes in biochemical characteristics and activities of ripening associated enzymes in mango fruit during the storage at different temperatures. Biomed Res. Int. 2014, 14, 232969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, T.; Saha, S.K.; Salauddin, M.; Chakraborty, R. Drying Kinetics, Fourier-Transform Infrared Spectroscopy Analysis and Sensory Evaluation of Sun, Hot-Air, Microwave and Freeze Dried Mango Leather. J. Microbiol. Biotechnol. Food Sci. 2021, 10, e3313. [Google Scholar] [CrossRef]
- Yan, J.K.; Wu, L.X.; Qiao, Z.R.; Cai, W.D.; Ma, H. Effect of different drying methods on the product quality and bioactive polysaccharides of bitter gourd (Momordica charantia L.) slices. Food Chem. 2019, 271, 588–596. [Google Scholar] [CrossRef]
- De Ancos, B.; Sánchez-Moreno, C.; Zacarías, L.; Rodrigo, M.J.; Sáyago Ayerdí, S.; Blancas Benítez, F.J.; Domínguez Avila, J.A.; González-Aguilar, G.A. Effects of two different drying methods (freeze-drying and hot air-drying) on the phenolic and carotenoid profile of ‘Ataulfo’ mango by-products. J. Food Meas. Charact. 2018, 12, 2145–2157. [Google Scholar] [CrossRef]
- Calín-Sánchez, Á.; Lipan, L.; Cano-Lamadrid, M.; Kharaghani, A.; Masztalerz, K.; Carbonell-Barrachina, Á.A.; Figiel, A. Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. Foods 2020, 9, 1261. [Google Scholar] [CrossRef]
- Mutuli, G.P.; Gitau, A.N.; Mbuge, D.O. Convective Drying Modeling Approaches: A Review for Herbs, Vegetables, and Fruits. J. Biosyst. Eng. 2020, 45, 197–212. [Google Scholar] [CrossRef]
- Wen Chua, L.Y.; Chua, B.L.; Figiel, A.; Chong, C.H.; Wojdyło, A.; Szumny, A.; Lech, K. Characterisation of the convective hot-air drying and vacuum microwave drying of cassia alata: Antioxidant activity, essential oil volatile composition and quality studies. Molecules 2019, 24, 1625. [Google Scholar] [CrossRef] [Green Version]
- Zhu, A. The convective hot air drying of Lactuca sativa slices. Int. J. Green Energy 2018, 15, 201–207. [Google Scholar] [CrossRef]
- Şen, S.; Aydin, F. Experimental investigation of drying kinetics of apple with hot air, microwave and ultrasonic power. Sadhana 2020, 45, 94. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Ah-Hen, K.; Chacana, M.; Vergara, J.; Martínez-Monzó, J.; García-Segovia, P.; Lemus-Mondaca, R.; Di Scala, K. Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chem. 2012, 132, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Udomkun, P.; Argyropoulos, D.; Nagle, M.; Mahayothee, B.; Janjai, S.; Müller, J. Single layer drying kinetics of papaya amidst vertical and horizontal airflow. LWT Food Sci. Technol. 2015, 64, 67–73. [Google Scholar] [CrossRef]
- Diop, A.; Méot, J.M.; Léchaudel, M.; Chiroleu, F.; Ndiaye, N.D.; Mertz, C.; Cissé, M.; Chillet, M. Impact of preharvest and postharvest on color changes during convective drying of mangoes. Foods 2021, 10, 490. [Google Scholar] [CrossRef] [PubMed]
- Russo, P.; Adiletta, G.; Di Matteo, M.; Farina, V.; Corona, O.; Cinquanta, L. Drying kinetics and physico-chemical quality of mango slices. Chem. Eng. Trans. 2019, 75, 109–114. [Google Scholar] [CrossRef]
- Putra, R.N.; Ajiwiguna, T.A. Influence of air temperature and velocity for drying process. Procedia Eng. 2017, 170, 516–519. [Google Scholar] [CrossRef]
- Mishra, M.; Kandasamy, P.; Nath Shukla, R.; Kumar, A. Convective Hot-air Drying of Green Mango: Influence of Hot Water Blanching and Chemical Pretreatments on Drying Kinetics and Physicochemical Properties of Dried Product. Int. J. Fruit Sci. 2021, 21, 732–757. [Google Scholar] [CrossRef]
- Sehrawat, R.; Nema, P.K.; Kaur, B.P. Quality evaluation and drying characteristics of mango cubes dried using low-pressure superheated steam, vacuum and hot air drying methods. LWT Food Sci. Technol. 2018, 92, 548–555. [Google Scholar] [CrossRef]
- Omolola, A.O.; Jideani, A.I.O.; Kapila, P.F. Quality properties of fruits as affected by drying operation. Crit. Rev. Food Sci. Nutr. 2017, 57, 95–108. [Google Scholar] [CrossRef]
- Izli, N.; Izli, G.; Onur, T. Influence of different drying techniques on mango. Food Sci. Technol. 2017, 37, 604–612. [Google Scholar] [CrossRef] [Green Version]
- Illera, A.E.; Sanz, M.T.; Benito-Román, O.; Varona, S.; Beltrán, S.; Melgosa, R.; Solaesa, A.G. Effect of thermosonication batch treatment on enzyme inactivation kinetics and other quality parameters of cloudy apple juice. Innov. Food Sci. Emerg. Technol. 2018, 47, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Adetoro, A.O.; Opara, U.L.; Fawole, O.A. Effect of blanching on enzyme inactivation, physicochemical attributes and antioxidant capacity of hot-air dried pomegranate (Punica granatum l.) arils (cv. wonderful). Processes 2021, 9, 25. [Google Scholar] [CrossRef]
- Osae, R.; Essilfie, G.; Alolga, R.N.; Akaba, S.; Song, X.; Owusu-Ansah, P.; Zhou, C. Application of non-thermal pretreatment techniques on agricultural products prior to drying: A review. J. Sci. Food Agric. 2020, 100, 2585–2599. [Google Scholar] [CrossRef]
- Argyropoulos, D.; Heindl, A.; Müller, J. Assessment of convection, hot-air combined with microwave-vacuum and freeze-drying methods for mushrooms with regard to product quality. Int. J. Food Sci. Technol. 2011, 46, 333–342. [Google Scholar] [CrossRef]
- AOAC Int. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- Defraeye, T. Impact of size and shape of fresh-cut fruit on the drying time and fruit quality. J. Food Eng. 2017, 210, 35–41. [Google Scholar] [CrossRef]
- Minuye, M.; Getachew, P.; Baye, K.; Laillou, A.; Chitekwe, S. Effects of different drying methods and ascorbic acid pretreatment on carotenoids and polyphenols of papaya fruit in Ethiopia. Food Sci. Nutr. 2021, 9, 3346–3353. [Google Scholar] [CrossRef]
- Cichowska, J.; Kowalska, H. Effect of osmotic pre-treatment and temperature storage conditions on water activity and colour of dried apple. Int. J. Food Eng. 2018, 14, 20170158. [Google Scholar] [CrossRef] [Green Version]
- Zakir, H.M.; Fardush, J.; Hossain, M.S.; Islam, M.Z.; Shariar, S.M.S.; Rokshana, K.; Hossian, M. Effects of storage temperatures on different biochemical characteristics of 1-methylcyclopropene treated mango (Mangifera Indica L.) variety Khirshapat. Am. J. Food Sci. Technol. 2018, 6, 76–82. [Google Scholar]
- Li, R.; Shang, H.; Wu, H.; Wang, M.; Duan, M.; Yang, J. Thermal inactivation kinetics and effects of drying methods on the phenolic profile and antioxidant activities of chicory (Cichorium intybus L.) leaves. Sci. Rep. 2018, 8, 9529. [Google Scholar] [CrossRef] [PubMed]
- Miłek, J. Application of the new method to determine the activation energies and optimum temperatures of inulin hydrolysis by exo-inulinases Aspergillus niger. J. Therm. Anal. Calorim. 2021, 1–7. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- De Lima, L.C.O.; Chitarra, A.B.; Chitarra, M.I.F.; Carlos De Oliveira Lima, L.; Chitarra, A.B.; Isabel, M.; Chitarra, F. Changes in amylase activity starch and sugars contents in mango fruits pulp Cv. Tommy Atkins with spongy tissue. Braz. Arch. Biol. Technol. 2001, 44, 59–62. [Google Scholar] [CrossRef] [Green Version]
- Terebiznik, M.R.; Buera, M.P.; Pilosof, A.M.R. Thermal Stability of Dehydrated α-Amylase in Trehalose Matrices in Relation to its Phase Transitions. LWT Food Sci. Technol. 1997, 30, 513–518. [Google Scholar] [CrossRef]
- Turner, N.A.; Vulfson, E.N. At what temperature can enzymes maintain their catalytic activity? Enzym. Microb. Technol. 2000, 27, 108–113. [Google Scholar] [CrossRef]
- Samborska, K.; Witrowa-Rajchert, D.; Gonçalves, A. Spray-drying of α-amylase—The effect of process variables on the enzyme inactivation. Dry. Technol. 2005, 23, 941–953. [Google Scholar] [CrossRef]
- Warchol, M.; Perrin, S.; Grill, J.P.; Schneider, F. Characterization of a purified β-fructofuranosidase from Bifidobacterium infantis ATCC 15697. Lett. Appl. Microbiol. 2002, 35, 462–467. [Google Scholar] [CrossRef]
- Bassetti, F.J.; Bergamasco, R.; Moraes, F.F.; Zanin, G.M. Thermal stability and deactivation energy of free and immobilized invertase. Braz. J. Chem. Eng. 2000, 17, 867–872. [Google Scholar] [CrossRef]
- De Jesus, S.S.; Maciel Filho, R. Drying of α-amylase by spray drying and freeze-drying—A comparative study. Braz. J. Chem. Eng. 2014, 31, 625–631. [Google Scholar] [CrossRef]
- Scanlon, M.G.; Henrich, A.W. 13—Factors Affecting Enzyme Activity in Food Processing. In Proteins in Food Processing, 2nd ed.; Yada, R.Y., Ed.; Woodhead Publishing: Sawston, UK, 2018; pp. 337–365. [Google Scholar]
- Guiné, R.P.F. The Drying of Foods and Its Effect on the Physical-Chemical, Sensorial and Nutritional Properties. Int. J. Food Eng. 2018, 4, 93–100. [Google Scholar] [CrossRef]
- Udomkun, P.; Nagle, M.; Mahayothee, B.; Nohr, D.; Koza, A.; Müller, J. Influence of air drying properties on non-enzymatic browning, major bio-active compounds and antioxidant capacity of osmotically pretreated papaya. LWT Food Sci. Technol. 2015, 60, 914–922. [Google Scholar] [CrossRef]
- Chakraborty, S.; Baier, D.; Knorr, D.; Mishra, H.N. High pressure inactivation of polygalacturonase, pectinmethylesterase and polyphenoloxidase in strawberry puree mixed with sugar. Food Bioprod. Process. 2015, 95, 281–291. [Google Scholar] [CrossRef]
- Rahman, M.; Absar, N.; Ahsan, M. Correlation of carbohydrate content with the changes in amylase, invertase and galactosidase activity of ripe mango pulp during storage under different temperatures. Bangladesh J. Sci. Ind. Res. 2011, 46, 443–446. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhtar, A.; Latif, S.; Müller, J. Effect of Hot-Air Convective Drying on Activity Retention of Amylase and Invertase in Dried Mango of Varieties Sindri, SB Chaunsa, and Tommy Atkins. Appl. Sci. 2021, 11, 6964. https://doi.org/10.3390/app11156964
Mukhtar A, Latif S, Müller J. Effect of Hot-Air Convective Drying on Activity Retention of Amylase and Invertase in Dried Mango of Varieties Sindri, SB Chaunsa, and Tommy Atkins. Applied Sciences. 2021; 11(15):6964. https://doi.org/10.3390/app11156964
Chicago/Turabian StyleMukhtar, Adnan, Sajid Latif, and Joachim Müller. 2021. "Effect of Hot-Air Convective Drying on Activity Retention of Amylase and Invertase in Dried Mango of Varieties Sindri, SB Chaunsa, and Tommy Atkins" Applied Sciences 11, no. 15: 6964. https://doi.org/10.3390/app11156964
APA StyleMukhtar, A., Latif, S., & Müller, J. (2021). Effect of Hot-Air Convective Drying on Activity Retention of Amylase and Invertase in Dried Mango of Varieties Sindri, SB Chaunsa, and Tommy Atkins. Applied Sciences, 11(15), 6964. https://doi.org/10.3390/app11156964