Analysis of the Landfill Leachate Treatment System Using Arima Models: A Case Study in a Megacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Information Collection
2.3. Laboratory Analysis
2.4. Information Analysis
3. Results and Discussion
3.1. Untreated Leachate
3.2. Treated Leachate
4. Conclusions
- The ARIMA results confirm that the concentrations of HMs, BOD5, and COD in untreated leachate do not follow the same annual cycles observed for the MSW quantity disposed in the landfill. This difference is possibly associated with the leachate HRT in the conduction and pre-treatment system. ARIMA analysis suggests an HRT of up to one month (AR = 1) for HMs identified as indicators of untreated leachate (Cu, Pb, and Zn). As expected, there is also no seasonal component for ARIMA models of the HMs identified as indicators of treated leachate (Fe and Ni). Therefore, there is no transfer in time of the effect, which allows scheduling the operation of the treatment system under study;
- The findings suggest that Cd is the HM with the largest concentration variations in untreated leachate during the study period (MA = 11). This HM shows variations over periods of 11 consecutive months. Differences in the MA term of the developed models suggest that Cd and Co are the most difficult HMs to homogenize in pre-treatment ponds;
- The removal efficiency of indicator HMs of the treatment plant operation (Fe and Ni) is probably conditioned by processes carried out over a period of one month (AR = 1). The high input concentration of these indicator HMs may prevent changing their ARIMA temporal structure during leachate treatment. This is reflected in the low removal efficiencies for all HMs under study (average = 26.1%);
- The results show that during the treatment plant operation it is more difficult to control fluctuations in COD and BOD5 concentration (MA between 2–4), compared to fluctuations in HM concentration (MA between 0–2);
- Finally, this study will be useful for deepening knowledge regarding the use of statistical models during the operation of leachate treatment systems in developing countries. This research will also be relevant for the public and private companies responsible for optimally scheduling the operation of these treatment systems.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AR | Auto-regressive. |
ARIMA | Auto-regressive integrated moving average. |
BIC | Bayesian Information Criterion. |
BOD5 | Biological oxygen demand. |
COD | Chemical oxygen demand. |
HM | Heavy metal. |
HRT | Hydraulic retention time. |
LTS | Leachate treatment systems. |
MA | Moving average. |
MAE | Mean absolute error. |
MAPE | Mean absolute percentage error. |
MSW | Municipal solid waste. |
Q’ | Ljung–Box statistic. |
R2 | Coefficient of determination. |
RMSE | Root mean square error. |
TSS | Total suspended solids. |
WTP | Wastewater treatment plant. |
References
- Propp, V.R.; De Silva, A.O.; Spencer, C.; Brown, S.J.; Catingan, S.D.; Smith, J.E.; Roy, J.W. Organic contaminants of emerging concern in leachate of historic municipal landfills. Environ. Pollut. 2021, 276, 116474. [Google Scholar] [CrossRef]
- Mishra, H.; Rathod, M.; Karmakar, S.; Kumar, R. A framework for assessment and characterisation of municipal solid waste landfill leachate: An application to the Turbhe landfill, Navi Mumbai, India. Environ. Monit. Assess. 2016, 188, 1–23. [Google Scholar] [CrossRef]
- Sauve, G.; Van Acker, K. The environmental impacts of municipal solid waste landfills in Europe: A life cycle assessment of proper reference cases to support decision making. J. Environ. Manag. 2020, 261, 110216. [Google Scholar] [CrossRef]
- Vaccari, M.; Tudor, T.; Vinti, G. Characteristics of leachate from landfills and dumpsites in Asia, Africa and Latin America: An overview. Waste Manag. 2019, 95, 416–431. [Google Scholar] [CrossRef] [PubMed]
- Righetto, I.; Al-Juboori, R.A.; Kaljunen, J.U.; Mikola, A. Multipurpose treatment of landfill leachate using natural coagulants—Pretreatment for nutrient recovery and removal of heavy metals and micropollutants. J. Environ. Chem. Eng. 2021, 9, 105213. [Google Scholar] [CrossRef]
- Min, J.-E.; Kim, M.; Kim, J.Y.; Park, I.-S.; Park, J.-W. Leachate modeling for a municipal solid waste landfill for upper expansion. KSCE J. Civ. Eng. 2010, 14, 473–480. [Google Scholar] [CrossRef]
- Wu, C.; Chen, W.; Gu, Z.; Li, Q. A review of the characteristics of Fenton and ozonation systems in landfill leachate treatment. Sci. Total Environ. 2021, 762, 143131. [Google Scholar] [CrossRef]
- González-Cortés, J.J.; Almenglo, F.; Ramírez, M.; Cantero, D. Effect of two different intermediate landfill leachates on the ammonium oxidation rate of non-adapted and adapted nitrifying biomass. J. Environ. Manag. 2021, 281, 111902. [Google Scholar] [CrossRef] [PubMed]
- Margallo, M.; Ziegler-Rodriguez, K.; Vázquez-Rowe, I.; Aldaco, R.; Irabien, Á.; Kahhat, R. Enhancing waste management strategies in Latin America under a holistic environmental assessment perspective: A review for policy support. Sci. Total Environ. 2019, 689, 1255–1275. [Google Scholar] [CrossRef]
- Rajoo, K.S.; Karam, D.S.; Ismail, A.; Arifin, A. Evaluating the leachate contamination impact of landfills and open dumpsites from developing countries using the proposed Leachate Pollution Index for Developing Countries (LPIDC). Environ. Nanotechnol. Monit. Manag. 2020, 14, 100372. [Google Scholar] [CrossRef]
- Manaf, L.A.; Samah, M.A.A.; Zukki, N.I.M. Municipal solid waste management in Malaysia: Practices and challenges. Waste Manag. 2009, 29, 2902–2906. [Google Scholar] [CrossRef]
- Kjeldsen, P.; Barlaz, M.A.; Rooker, A.P.; Baun, A.; Ledin, A.; Christensen, T.H. Present and Long-Term Composition of MSW Landfill Leachate: A Review. Crit. Rev. Environ. Sci. Technol. 2002, 32, 297–336. [Google Scholar] [CrossRef]
- Wijekoon, W.M.P.C.; Koliyabandara, P.A.; Cooray, A.; Lam, S.S.; Athapattu, B.C.L.; Vithanage, M. Progress and Prospects in Mitigation of Landfill Leachate Pollution: Risk, Pollution Potential, Treatment and Challenges. J. Hazard. Mater. 2021, 126627. [Google Scholar] [CrossRef]
- Luo, H.; Zeng, Y.; Cheng, Y.; He, D.; Pan, X. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Sci. Total Environ. 2020, 703, 135468. [Google Scholar] [CrossRef] [PubMed]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Nourani, V.; Asghari, P.; Sharghi, E. Artificial intelligence based ensemble modeling of wastewater treatment plant using jittered data. J. Clean. Prod. 2021, 291, 125772. [Google Scholar] [CrossRef]
- Siddiqui, S.; Conkle, J.L.; Scarpa, J.; Sadovski, A. An analysis of U.S. wastewater treatment plant effluent dilution ratio: Implications for water quality and aquaculture. Sci. Total Environ. 2020, 721, 137819. [Google Scholar] [CrossRef]
- Dellana, S.A.; West, D. Predictive modeling for wastewater applications: Linear and nonlinear approaches. Environ. Model. Softw. 2009, 24, 96–106. [Google Scholar] [CrossRef]
- Chen, Z.; Min, H.; Hu, D.; Wang, H.; Zhao, Y.; Cui, Y.; Zou, X.; Wu, P.; Ge, H.; Luo, K.; et al. Performance of a novel multiple draft tubes airlift loop membrane bioreactor to treat ampicillin pharmaceutical wastewater under different temperatures. Chem. Eng. J. 2020, 380, 122521. [Google Scholar] [CrossRef]
- Selvaraj, J.J.; Arunachalam, V.; Coronado-Franco, K.V.; Romero-Orjuela, L.V.; Ramírez-Yara, Y.N. Time-series modeling of fishery landings in the Colombian Pacific Ocean using an ARIMA model. Reg. Stud. Mar. Sci. 2020, 39, 101477. [Google Scholar] [CrossRef]
- Jamil, R. Hydroelectricity consumption forecast for Pakistan using ARIMA modeling and supply-demand analysis for the year 2030. Renew. Energy 2020, 154, 1–10. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, C.; Zhu, H.; Li, Y.; Gui, W. An integrated prediction model of heavy metal ion concentration for iron electrocoagulation process. Chem. Eng. J. 2020, 391, 123628. [Google Scholar] [CrossRef]
- Khashei, M.; Bijari, M. An artificial neural network (p,d,q) model for timeseries forecasting. Expert Syst. Appl. 2010, 37, 479–489. [Google Scholar] [CrossRef]
- Ebtehaj, I.; Bonakdari, H.; Zeynoddin, M.; Gharabaghi, B.; Azari, A. Evaluation of preprocessing techniques for improving the accuracy of stochastic rainfall forecast models. Int. J. Environ. Sci. Technol. 2020, 17, 505–524. [Google Scholar] [CrossRef]
- Maleki, A.; Nasseri, S.; Aminabad, M.S.; Hadi, M. Comparison of ARIMA and NNAR Models for Forecasting Water Treatment Plant’s Influent Characteristics. KSCE J. Civ. Eng. 2018, 22, 3233–3245. [Google Scholar] [CrossRef]
- Lotfi, K.; Bonakdari, H.; Ebtehaj, I.; Mjalli, F.S.; Zeynoddin, M.; Delatolla, R.; Gharabaghi, B. Predicting wastewater treatment plant quality parameters using a novel hybrid linear-nonlinear methodology. J. Environ. Manag. 2019, 240, 463–474. [Google Scholar] [CrossRef]
- Ömer Faruk, D. A hybrid neural network and ARIMA model for water quality time series prediction. Eng. Appl. Artif. Intell. 2010, 23, 586–594. [Google Scholar] [CrossRef]
- Parmar, K.S.; Bhardwaj, R. Statistical, time series, and fractal analysis of full stretch of river Yamuna (India) for water quality management. Environ. Sci. Pollut. Res. Int. 2015, 22, 397–414. [Google Scholar] [CrossRef]
- Ahmad, S.; Khan, I.H.; Parida, B.P. Performance of stochastic approaches for forecasting river water quality. Water Res. 2001, 35, 4261–4266. [Google Scholar] [CrossRef]
- Taheri Tizro, A.; Ghashghaie, M.; Georgiou, P.; Voudouris, K. Time series analysis of water quality parameters. J. Appl. Res. Water Wastewater 2014, 1, 40–50. [Google Scholar]
- Baird, R.B.; Eaton, A.D.; Rice editors, E.W. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation (WEF): Washington, DC, USA, 2017. [Google Scholar]
- MADS. Resolución 631 de 2015 Ministerio de Ambiente y Desarrollo Sostenible. 2015. Available online: https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=70346 (accessed on 30 September 2020).
- BOE. Real Decreto 646/2020. Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2020-7438 (accessed on 1 March 2020).
- Romero-Aguilar, M.; Colín-Cruz, A.; Sánchez-Salinas, E.; Ortiz-Hernández, M.L. Wastewater treatment by an artificial wetlands pilot system: Evaluation of the organic charge removal. Rev. Int. Contam. Ambient. 2009, 25, 157–167. [Google Scholar]
- Guerrero-Guzmán, V.-M. Análisis Estadístico de Series de Tiempo Económicas; International Thomson: México City, Mexico, 2003. [Google Scholar]
- IBM. Time Series Modeler. 2021. Available online: https://prod.ibmdocs-production-dal-6099123ce774e592a519d7c33db8265e-0000.us-south.containers.appdomain.cloud/docs/ko/spss-statistics/24.0.0?topic=option-time-series-modeler (accessed on 28 June 2021).
- Ljung, G.M.; Box, G.E.P. On a Measure of Lack of Fit in Time Series Models. Biometrika 1978, 65, 297–303. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Kumar, U.; Jain, V.K. ARIMA forecasting of ambient air pollutants (O3, NO, NO2 and CO). Stoch. Environ. Res. Risk Assess. 2010, 24, 751–760. [Google Scholar] [CrossRef]
- Zafra-Mejía, C.; Romero-Torres, D. Tendencias tecnológicas de depuración de lixiviados en rellenos sanitarios iberoamericanos. Rev. Ing. Univ. De Medellín 2019, 18, 125–147. [Google Scholar] [CrossRef]
- Ehrig, H.-J.; Stegmann, R. Chapter 10.2—Leachate Quality. In Solid Waste Landfilling; Cossu, R., Stegmann, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 511–539. [Google Scholar]
- Raghab, S.M.; Abd El Meguid, A.M.; Hegazi, H.A. Treatment of leachate from municipal solid waste landfill. HBRC J. 2013, 9, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Lozano-Rivas, W.A. Uso del extracto de fique (Furcraea sp.) como coadyuvante de coagulación en tratamiento de lixiviados. Rev. Int. Contam. Ambient. 2012, 28, 219–227. Available online: http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S0188-49992012000300004&lng=es&nrm=iso&tlng=es (accessed on 1 March 2020).
- Novelo, R.I.M.; Reyes, R.B.G.; Borges, E.R.C.; Riancho, M.R.S. Treating leachate by Fenton oxidation. Ing. E Investig. 2010, 30, 80–85. [Google Scholar]
- Trujillo, D.; Font, X.; Sánchez, A. Use of Fenton reaction for the treatment of leachate from composting of different wastes. J. Hazard. Mater. 2006, 138, 201–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinhart, D.R.; Basel Al-Yousfi, A. The Impact of Leachate Recirculation on Municipal Solid Waste Landfill Operating Characteristics. Waste Manag. Res. 1996, 14, 337–346. [Google Scholar] [CrossRef]
- Heang, N.H.; Chiemchaisri, C.; Chiemchaisri, W.; Shoda, M. Treatment of municipal landfill leachate at different stabilization stages in two-stage membrane bioreactor bioaugmented with Alcaligenes faecalis no. 4. Bioresour. Technol. Rep. 2020, 11, 100528. [Google Scholar] [CrossRef]
- Renou, S.; Givaudan, J.G.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill leachate treatment: Review and opportunity. J. Hazard. Mater. 2008, 150, 468–493. [Google Scholar] [CrossRef]
- De Castro, T.M.; Arantes, E.J.; de Mendonça Costa, M.S.S.; Gotardo, J.T.; Passig, F.H.; de Carvalho, K.Q.; Gomes, S.D. Anaerobic co-digestion of industrial waste landfill leachate and glycerin in a continuous anaerobic bioreactor with a fixed-structured bed (ABFSB): Effects of volumetric organic loading rate and alkaline supplementation. Renew. Energy 2021, 164, 1436–1446. [Google Scholar] [CrossRef]
- Wdowczyk, A.; Szymańska-Pulikowska, A. Differences in the Composition of Leachate from Active and Non-Operational Municipal Waste Landfills in Poland. Water 2020, 12, 3129. [Google Scholar] [CrossRef]
- Wiszniowski, J.; Robert, D.; Surmacz-Gorska, J.; Miksch, K.; Weber, J.V. Landfill leachate treatment methods: A review. Environ. Chem. Lett. 2006, 4, 51–61. [Google Scholar] [CrossRef]
- Youcai, Z. Chapter 5—Leachate Treatment Engineering Processes. In Pollution Control Technology for Leachate from Municipal Solid Waste; Youcai, Z., Ed.; Butterworth-Heinemann: Cambridge, MA, USA, 2018; pp. 361–522. [Google Scholar]
- Bolyard, S.C.; Reinhart, D.R. Application of landfill treatment approaches for stabilization of municipal solid waste. Waste Manag. 2016, 55, 22–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Yaqout, A.F.; Hamoda, M.F. Evaluation of landfill leachate in arid climate—A case study. Environ. Int. 2003, 29, 593–600. [Google Scholar] [CrossRef]
- El-Gendy, A.S.; Biswas, N.; Bewtra, J.K. Municipal landfill leachate treatment for metal removal using water hyacinth in a floating aquatic system. Water Environ. Res. A Res. Publ. Water Environ. Fed. 2006, 78, 951–964. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, E.; Cardona, S.-A. Technologies applicable to the removal of heavy metals from landfill leachate. Environ. Sci. Pollut. Res. 2019, 26, 15725–15753. [Google Scholar] [CrossRef] [PubMed]
Untreated Leachate | ||||||||
MSW | Flow | BOD5 | COD | NH4 | Cd | Zn | Hg | |
µ | 179,765 | 15.3 | 8034 | 14,657 | 2707 | 0.014 | 0.790 | 0.015 |
û | 182,157 | 14.9 | 7688 | 14,003 | 2733 | 0.010 | 0.530 | 0.008 |
Mi | 139,798 | 6.91 | 32.8 | 2198 | 1959 | 0.003 | 0.120 | 0.001 |
Ma | 217,386 | 26.0 | 19,402 | 32,358 | 3967 | 0.200 | 4.830 | 0.500 |
SD | 16168 | 4.33 | 5403 | 8445 | 287 | 0.021 | 0.662 | 0.043 |
As | Cu | Fe | Pb | Co | Cr | Ni | pH | |
µ | 0.029 | 0.303 | 97.2 | 0.236 | 0.096 | 0.717 | 0.488 | 8.29 |
û | 0.020 | 0.090 | 20.3 | 0.190 | 0.080 | 0.700 | 0.450 | 8.34 |
Mi | 0.001 | 0.010 | 0.260 | 0.010 | 0.030 | 0.020 | 0.058 | 7.49 |
Ma | 0.110 | 30.0 | 10,900 | 8.280 | 0.680 | 3.075 | 1.510 | 9.38 |
SD | 0.031 | 2.413 | 888 | 0.658 | 0.063 | 0.358 | 0.194 | 0.31 |
Treated Leachate | ||||||||
MSW | Flow | BOD5 | COD | NH4 | Cd | Zn | Hg | |
µ | 179,765 | 15.1 | 503 | 2521 | 465 | 0.011 | 0.404 | 0.005 |
û | 182,157 | 14.9 | 99.0 | 2281 | 250 | 0.010 | 0.370 | 0.004 |
Mi | 139,798 | 5.71 | 14.0 | 25.0 | 31.0 | 0.005 | 0.100 | 0.001 |
Ma | 217,386 | 25.5 | 5750 | 11,074 | 2152 | 0.041 | 1.360 | 0.029 |
SD | 16,168 | 4.36 | 868 | 1601 | 565 | 0.008 | 0.207 | 0.004 |
As | Cu | Fe | Pb | Co | Cr | Ni | pH | |
µ | 0.014 | 0.080 | 7.78 | 0.121 | 0.060 | 0.455 | 0.390 | 8.19 |
û | 0.010 | 0.050 | 4.78 | 0.100 | 0.050 | 0.400 | 0.384 | 8.35 |
Mi | 0.000 | 0.010 | 1.60 | 0.005 | 0.020 | 0.030 | 0.020 | 7.00 |
Ma | 0.065 | 0.200 | 38.4 | 0.417 | 0.188 | 1.500 | 0.700 | 9.00 |
SD | 0.014 | 0.068 | 6.63 | 0.066 | 0.029 | 0.237 | 0.119 | 0.46 |
Removal (%) | ||||||||
MSW | Flow | BOD5 | COD | NH4 | Cd | Zn | Hg | |
µ | - | - | 86.3 | 63.8 | 88.7 | 17.0 | 26.8 | 19.3 |
û | - | - | 87.0 | 67.5 | 89.0 | 17.0 | 27.5 | 18.0 |
Mi | - | - | 78.0 | 34.0 | 85.0 | 15.0 | 4.00 | 0.00 |
Ma | - | - | 89.0 | 76.0 | 94.0 | 19.0 | 41.0 | 52.0 |
SD | - | - | 3.17 | 11.4 | 2.74 | 2.83 | 11.1 | 14.8 |
As | Cu | Fe | Pb | Co | Cr | Ni | pH | |
µ | 27.4 | 26.0 | 52.4 | 23.5 | 22.5 | 33.5 | 12.8 | - |
û | 27.5 | 29.5 | 53.0 | 22.5 | 26.5 | 35.0 | 12.0 | - |
Mi | 20.0 | 2.00 | 42.0 | 12.0 | 8.00 | 18.0 | 9.0 | - |
Ma | 39.0 | 33.0 | 59.0 | 37.0 | 31.0 | 43.0 | 18.0 | - |
SD | 5.21 | 8.54 | 5.22 | 10.3 | 8.57 | 8.67 | 3.31 | - |
Model | T a | R2 | RMSE b | MAPE c | MAE d | Ljung–Box (Q’) p-Value | BIC e | |
---|---|---|---|---|---|---|---|---|
Untreated leachate | ||||||||
BOD5 | (0,1,1)(0,0,0) | NT | 0.863 | 1993 | 220 | 1369 | 0.294 | 15.2 |
COD | (0,1,1)(0,0,0) | NT | 0.847 | 3302 | 24.5 | 2183 | 0.095 | 16.2 |
NH4 | (1,0,3)(1,0,1) | NT | 0.337 | 237 | 5.55 | 145.6 | 0.102 | 11.1 |
Cd | (1,0,11)(0,0,1) | NL | 0.245 | 0.019 | 36.0 | 0.006 | 0.064 | −7.80 |
Zn | (1,1,1)(0,0,0) | NL | 0.371 | 0.524 | 38.7 | 0.288 | 0.052 | −1.22 |
Hg | (0,0,1)(0,0,0) | NL | 0.031 | 0.041 | 249 | 0.011 | 0.796 | −6.30 |
As | (2,0,0)(0,0,0) | NL | 0.245 | 0.026 | 349 | 0.017 | 0.667 | −7.16 |
Cu | (0,1,1)(0,0,0) | NL | 0.347 | 2.43 | 43.7 | 0.224 | 0.981 | 1.80 |
Fe | (1,0,1)(0,0,0) | NL | 0.203 | 896 | 163 | 86.66 | 0.358 | 13.6 |
Pb | (1,0,1)(0,0,0) | NL | 0.334 | 0.669 | 63.3 | 0.125 | 0.795 | −0.708 |
Co | (0,0,2)(0,0,0) | NL | 0.105 | 0.062 | 31.0 | 0.030 | 0.278 | −5.45 |
Cr | (1,0,0)(0,0,0) | SR | 0.291 | 0.303 | 95.5 | 0.196 | 0.153 | −2.32 |
Ni | (1,0,0)(0,0,0) | SR | 0.329 | 0.159 | 24.1 | 0.097 | 0.145 | −3.60 |
pH | (1,0,0)(0,0,0) | NT | 0.445 | 0.228 | 1.90 | 0.158 | 0.291 | −2.88 |
Treated leachate | ||||||||
BOD5 | (0,0,4)(0,0,0) | NL | 0.514 | 613 | 112 | 296.2 | 0.051 | 12.9 |
COD | (1,0,2)(0,0,1) | SR | 0.654 | 951 | 77.2 | 452.4 | 0.744 | 13.8 |
NH4 | (0,1,0)(0,0,0) | NT | 0.660 | 322 | 87.6 | 182.1 | 0.881 | 11.6 |
Cd | (1,1,0)(0,0,0) | NL | 0.690 | 0.004 | 14.1 | 0.002 | 0.326 | −10.8 |
Zn | (0,0,2)(0,0,0) | NL | 0.389 | 0.176 | 33.5 | 0.119 | 0.163 | −3.37 |
Hg | (0,1,1)(0,0,0) | NL | 0.334 | 0.004 | 79.4 | 0.002 | 0.790 | −11.0 |
As | (0,1,1)(0,0,0) | NL | 0.147 | 0.015 | 168 | 0.010 | 0.153 | −8.40 |
Cu | (0,1,1)(0,0,0) | NT | 0.914 | 0.020 | 28.2 | 0.011 | 0.302 | −7.78 |
Fe | (1,0,1)(0,0,0) | NL | 0.398 | 5.17 | 42.3 | 3.015 | 0.365 | 3.38 |
Pb | (0,1,1)(0,0,0) | SR | 0.378 | 0.052 | 35.4 | 0.028 | 0.959 | −5.87 |
Co | (0,1,1)(1,0,1) | NL | 0.553 | 0.019 | 18.9 | 0.012 | 0.797 | −7.79 |
Cr | (1,0,2)(0,0,0) | NL | 0.389 | 0.187 | 34.1 | 0.119 | 0.975 | −3.22 |
Ni | (1,0,1)(0,0,0) | NT | 0.365 | 0.095 | 27.1 | 0.069 | 0.736 | −4.60 |
pH | (1,0,0)(0,0,0) | NT | 0.556 | 0.309 | 2.74 | 0.221 | 0.879 | −2.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafra-Mejía, C.A.; Zuluaga-Astudillo, D.A.; Rondón-Quintana, H.A. Analysis of the Landfill Leachate Treatment System Using Arima Models: A Case Study in a Megacity. Appl. Sci. 2021, 11, 6988. https://doi.org/10.3390/app11156988
Zafra-Mejía CA, Zuluaga-Astudillo DA, Rondón-Quintana HA. Analysis of the Landfill Leachate Treatment System Using Arima Models: A Case Study in a Megacity. Applied Sciences. 2021; 11(15):6988. https://doi.org/10.3390/app11156988
Chicago/Turabian StyleZafra-Mejía, Carlos Alfonso, Daniel Alberto Zuluaga-Astudillo, and Hugo Alexander Rondón-Quintana. 2021. "Analysis of the Landfill Leachate Treatment System Using Arima Models: A Case Study in a Megacity" Applied Sciences 11, no. 15: 6988. https://doi.org/10.3390/app11156988
APA StyleZafra-Mejía, C. A., Zuluaga-Astudillo, D. A., & Rondón-Quintana, H. A. (2021). Analysis of the Landfill Leachate Treatment System Using Arima Models: A Case Study in a Megacity. Applied Sciences, 11(15), 6988. https://doi.org/10.3390/app11156988