Potentially Toxic Elements (PTEs) in Soils and Bulbs of Elephant Garlic (Allium ampeloprasum L.) Grown in Valdichiana, a Traditional Cultivation Area of Tuscany, Italy
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Sample Treatment
2.3. Chemical Analysis
2.4. Data Analysis
2.4.1. Health Risk
2.4.2. Soil Contamination
2.4.3. Ecological Risk
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- MpAAF—Ministero delle politiche Agricole Alimentari e Forestali. Quattordicesima Revisione Dell’elenco dei Prodotti Agroalimentari Tradizionali; 2014.
- Aglione della Valdichiana. Available online: www.aglionevaldichiana.net/ (accessed on 7 May 2021).
- Ceccanti, C.; Rocchetti, G.; Lucini, L.; Giuberti, G.; Landi, M.; Biagiotti, S.; Guidi, L. Comparative phytochemical profile of the elephant garlic (Allium ampeloprasum var. holmense) and the common garlic (Allium sativum) from the Val di Chiana area (Tuscany, Italy) before and after in vitro gastrointestinal digestion. Food Chem. 2021, 338, 128011. [Google Scholar] [CrossRef]
- Jiang, W. Hyperaccumulation of cadmium by roots, bulbs and shoots of garlic (Allium sativum L.). Bioresour. Technol. 2001, 76, 9–13. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, Y.; He, Z.; Ma, M. Cadmium accumulation and oxidative burst in garlic (Allium sativum). J. Plant Physiol. 2005, 162, 977–984. [Google Scholar] [CrossRef]
- Liu, D.; Zou, J.; Meng, Q.; Zou, J.; Jiang, W. Uptake and accumulation and oxidative stress in garlic (Allium sativum L.) under lead phytotoxicity. Ecotoxicology 2009, 18, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Bhardwaj, R.; Gautam, V.; Bali, S.; Kaur, R.; Kaur, P.; Sharma, M.; Kumar, V.; Sharma, A.; Sonia; et al. Phytoremediation in waste management: Hyperaccumulation diversity and techniques. In Plants under Metal and Metalloid Stress; Hasanuzzaman, M., Nahar, K., Fujita, M., Eds.; Springer Singapore: Singapore, 2018; pp. 277–302. ISBN 9789811322419. [Google Scholar]
- Iqbal, H.H.; Taseer, R.; Anwar, S.; Qadir, A.; Shahid, N. Human health risk assessment: Heavy metal contamination of vegetables in Bahawalpur, Pakistan. Bull. Environ. Stud. 2016, 1, 10–17. [Google Scholar]
- Ahmad, K.; Khan, Z.I.; Ashfaq, A.; Ashraf, M.; Akram, N.A.; Sher, M.; Shad, H.A.; Tufarelli, V.; Lonigro, A.; Fracchiolla, M.; et al. Uptake of hazardous elements by spring onion (Allium fistulosum L.) from soil irrigated with different types of water and possible health risk. Environ. Earth Sci. 2017, 76, 322. [Google Scholar] [CrossRef]
- Soudek, P.; Petrová, Š.; Vaněk, T. Heavy metal uptake and stress responses of hydroponically cultivated garlic (Allium sativum L.). Environ. Exp. Bot. 2011, 74, 289–295. [Google Scholar] [CrossRef]
- Devi, P.V.; Brar, D.J.K. Comparison of proximate composition and mineral concentration of Allium Ampeloprasum (Elephant Garlic) and Allium Sativum (Garlic). Chem. Rev. Lett. 2018, 7, 362–367. [Google Scholar]
- ARPAT—Agenzia Regionale per la Protezione Ambientale della Toscana. Banca Dati Delle Zone Vulnerabili ai Nitrati. Available online: http://www.arpat.toscana.it/datiemappe/banche-dati/banca-dati-delle-zone-vulnerabili-ai-nitrati (accessed on 22 July 2021).
- Micó, C.; Recatalá, L.; Peris, M.; Sánchez, J. Assessing heavy metal sources in agricultural soils of an european mediterranean area by multivariate analysis. Chemosphere 2006, 65, 863–872. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Shi, T.; Ma, J.; Wu, X.; Ju, T.; Lin, X.; Zhang, Y.; Li, X.; Gong, Y.; Hou, H.; Zhao, L.; et al. Inventories of heavy metal inputs and outputs to and from agricultural soils: A review. Ecotox. Environmen. Saf. 2018, 164, 118–124. [Google Scholar] [CrossRef]
- Protezione Civile. Piano intercomunale di protezione civile. In Relazione Generale; Revisione, Unione dei Comuni Valdichiana Senese: Siena, Italy, 2014; Volume 1. [Google Scholar]
- Khan, Z.I.; Ahmad, K.; Akram, N.A.; Mehmood, N.; Yasmeen, S. Heavy metal contamination in water, soil and a potential vegetable garlic (Allium sativum L.) in Punjab, Pakistan. Pak. J. Bot. 2017, 49, 547–552. [Google Scholar]
- US EPA. Integrated Risk Information System. Available online: www.epa.gov/iris (accessed on 6 June 2021).
- Khan, M.U.; Malik, R.N.; Muhammad, S. Human health risk from heavy metal via food crops consumption with wastewater irrigation practices in Pakistan. Chemosphere 2013, 93, 2230–2238. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Protano, G.; Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy. Personal communication, 2021.
- Bonari, G.; Monaci, F.; Nannoni, F.; Angiolini, C.; Protano, G. Trace element uptake and accumulation in the medicinal herb hypericum perforatum l. across different geolithological settings. Biol. Trace Elem. Res. 2019, 189, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Bini, C.; Dall’Aglio, M.; Ferretti, O.; Gragnani, R. Background Levels of Microelements in Soils of Italy. Environ. Geochem. Health 1988, 10, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Mmolawa, K.B.; Likuku, A.S.; Gaboutloeloe, G.K. Assessment of heavy metal pollution in soils along major roadside areas in Botswana. Afr. J. Environ. Sci. Technol. 2011, 5, 186–196. [Google Scholar]
- Barbieri, M. The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J. Geol. Geophys. 2016, 5, 1. [Google Scholar] [CrossRef]
- Rahman, M.S.; Hossain, M.B.; Babu, S.M.O.F.; Rahman, M.; Ahmed, A.S.S.; Jolly, Y.N.; Choudhury, T.R.; Begum, B.A.; Kabir, J.; Akter, S. Source of metal contamination in sediment, their ecological risk, and phytoremediation ability of the studied mangrove plants in ship breaking area, Bangladesh. Mar. Pollut. Bull. 2019, 141, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Amuno, S.A. Potential ecological risk of heavy metal distribution in cemetery soils. Water Air Soil Pollut. 2013, 224, 1–12. [Google Scholar] [CrossRef]
- Dey, P.; Khaled, K.L. An extensive review on Allium ampeloprasum: A magical herb. Int. J. Sci. Res. 2015, 4, 371–377. [Google Scholar]
- García-Herrera, P.; Morales, P.; Fernández-Ruiz, V.; Sánchez-Mata, M.C.; Cámara, M.; Carvalho, A.M.; Ferreira, I.C.F.R.; Pardo-de-Santayana, M.; Molinad, M.; Tardio, J. Nutrients, phytochemicals and antioxidant activity in wild populations of Allium ampeloprasum L., a valuable underutilized vegetable. Food Res. Int. 2014, 62, 272–279. [Google Scholar] [CrossRef] [Green Version]
- Christou, A.; Theologides, C.P.; Costa, C.; Kalavrouziotis, I.K.; Varnavas, S.P. Assessment of toxic heavy metals concentrations in soils and wild and cultivated plant species in limni abandoned copper mining site, Cyprus. J. Geochem. Explor. 2017, 178, 16–22. [Google Scholar] [CrossRef]
- Kumar, J.I.N.; Soni, H.; Kumar, R.N.; Bhat, I. Hyperaccumulation and mobility of heavy metals in vegetable crops in India. J. Food Agric. Environ. 2009, 10, 34–45. [Google Scholar]
- Akinwande, B.A.; Olatunde, S.J. Comparative evaluation of the mineral profile and other selected components of onion and garlic. Int. Food Res. J. 2015, 22, 332–336. [Google Scholar]
- Polyakov, A.; Alekseeva, T.; Muravieva, I. The elemental composition of garlic (Allium sativum L.) and its variability. In Proceedings of the E3S Web of Conferences, Constanta, Romania, 26–27 June 2020; EDP Sciences: Rostovon-Don, Russia, 2020; Volume 175, p. 01016. [Google Scholar]
- Markert, B. Establishing of ‘Reference Plant’ for inorganic characterization of different plant species by chemical fingerprinting. Water Air Soil Pollut. 1992, 64, 533–538. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in FoodStuffs (Text with EEA relevance). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32006R1881 (accessed on 17 February 2021).
- FAO/WHO, Codex Alimentarius. Available online: http://www.fao.org/fao-who-codexalimentarius/about-codex/members/detail/en/c/15600/ (accessed on 3 July 2021).
- Picarelli, A.; Di Tola, M.; Vallecoccia, A.; Libanori, V.; Magrelli, M.; Carlesimo, M.; Rossi, A. Oral mucosa patch test: A new tool to recognizeand study the adverse effects of dietary nickel exposure. Biol. Trace Elem. Res. 2010, 139, 151–159. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Update of the Risk Assessment of Nickel in Food and Drinking Water. Adopted: 24 September 2020. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/6268 (accessed on 3 July 2021).
- Maleki, A.; Zarasvand, M.A. Heavy metals in selected edible vegetables and estimation of their daily intake in Sanandaj, Iran. Southeast Asian J. Trop. Med. Public Health 2008, 39, 7. [Google Scholar]
- Amin, N.; Hussain, A.; Alamzeb, S.; Begum, S. Accumulation of heavy metals in edible parts of vegetables irrigated with waste water and their daily intake to adults and children, district Mardan, Pakistan. Food Chem. 2013, 136, 1515–1523. [Google Scholar] [CrossRef]
- Kumar, D.; Priyanka; Shukla, V.; Kumar, S.; Ram, R.B.; Kumar, N. Metal pollution index and daily dietary intake of metals through consumption of vegetables. Int. J. Environ. Sci. Technol. 2020, 17, 3271–3278. [Google Scholar] [CrossRef]
- Pham, L.L.; Borghoff, S.J.; Thompson, C.M. Comparison of threshold of toxicological concern (TTC) values to oral reference dose (RfD) values. Regul. Toxicol. Pharmacol. 2020, 113, 104651. [Google Scholar] [CrossRef]
- Gebeyehu, H.R.; Bayissa, L.D. Levels of heavy metals in soil and vegetables and associated health risks in Mojo area, Ethiopia. PLoS ONE 2020, 15, e0227883. [Google Scholar] [CrossRef] [Green Version]
- De Vos, W.; Tarvainen, T. (Eds.) Interpretation of Geochemical Maps—Additional Tables, Figures, Maps, and Related Publications. Geochemical Atlas of Europe—Part 2; Geological Survey of Finland: Espoo, Finland, 2006; Unpublished work. [Google Scholar]
- Fiori, C.D.S.; Rodrigues, A.P.D.C.; Santelli, R.E.; Cordeiro, R.C.; Carvalheira, R.G.; Araújo, P.C.; Castilhos, Z.C.; Bidone, E.D. Ecological risk index for aquatic pollution control: A case study of coastal water bodies from the Rio de Janeiro state, southeastern Brazil. Geochim. Bras. 2013, 27, 24–36. [Google Scholar] [CrossRef]
- Kusin, F.M.; Azani, N.N.M.; Hasan, S.N.M.S.; Sulong, N.A. Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. Catena 2018, 165, 454–464. [Google Scholar] [CrossRef]
- Protano, G.; Rossi, S. Relationship between soil geochemistry and grape composition in Tuscany (Italy). J. Plant Nutr. Soil Sci. 2014, 177, 500–508. [Google Scholar] [CrossRef]
- Ballabio, C.; Panagos, P.; Lugato, E.; Huang, J.-H.; Orgiazzi, A.; Jones, A.; Fernández-Ugalde, O.; Borrelli, P.; Montanarella, L. Copper distribution in european topsoils: An assessment based on LUCAS soil survey. Sci. Total Environ. 2018, 636, 282–298. [Google Scholar] [CrossRef] [PubMed]
- Barber, A.A. Soil Nutrient Bioavailability. In A Mechanistic Approach, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1995; pp. 318–371. ISBN 0-471-58747-8. [Google Scholar]
- Anke, M.; Seeber, O.; Müller, R.; Schäfer, U.; Zerull, J. Uranium transfer in the food chain from soil to plants, animals and man. Geochemistry 2009, 69, 75–90. [Google Scholar] [CrossRef]
- Antonkiewicz, J.; Jasiewicz, C.; Koncewicz-Baran, M.; Sendor, R. Nickel bioaccumulation by the chosen plant species. Acta Physiol. Plant. 2016, 38, 40. [Google Scholar] [CrossRef] [Green Version]
Contamination Factor (CF) | Geo-Accumulation Index (Igeo) | ||
---|---|---|---|
CF < 1 | Low contamination | 0 < Igeo | Uncontaminated |
1 < CF < 3 | Moderate contamination | 0 ≤ Igeo < 1 | Low to moderately contaminated |
1 ≤ Igeo < 2 | Moderately contaminated | ||
3 < CF < 6 | Considerable contamination | 2 ≤ Igeo < 3 | Moderately to heavily contaminated |
3 ≤ Igeo < 4 | Heavily contaminated | ||
4 ≤ Igeo < 5 | Heavily to extremely contaminated | ||
CF > 6 | Very high contamination | Igeo ≥ 5 | Extremely contaminated |
Ecological Risk Factor (ERF) | Potential Ecological Risk Index (PERI) | ||
---|---|---|---|
ERi < 40 | Low ecological risk | RI < 65 | Low risk |
40 < ERi < 80 | Moderate ecological risk | 65 < RI < 130 | Moderate risk |
80 < ERi < 160 | Considerable ecological risk | 130 < RI < 260 | Considerable risk |
160 < ERi < 320 | High considerable ecological risk | 130 < RI < 260 | Considerable risk |
ERi > 320 | Significant high ecological risk | RI > 260 | Very high risk |
Elements | Valdichiana Elephant Garlic (AdV) | Elephant Garlic from Uncontaminated Soils | ||
---|---|---|---|---|
Min | Max | Mean ± std. dev. | ||
As | <0.001 | <0.001 | -- | 0.07 |
Cd | <0.001 | 0.29 | 0.07 ± 0.09 | 0.02 |
Co | 0.02 | 0.07 | 0.04 ± 0.02 | --- |
Cr | 0.01 | 0.46 | 0.17 ± 0.13 | 2.2 |
Cu | 2.41 | 6.62 | 4.34 ±1.18 | 1.1–10 |
Ni | 0.72 | 8.76 | 3.65 ± 2.30 | 0.2 |
Pb | 0.22 | 0.41 | 0.27 ± 0.05 | 0.1 |
Sb | <0.001 | 0.06 | 0.01 ± 0.01 | -- |
Tl | <0.001 | <0.001 | -- | -- |
U | 0.06 | 0.09 | 0.07 ± 0.01 | -- |
V | 0.04 | 0.12 | 0.07 ± 0.02 | -- |
Zn | 12.94 | 44.20 | 23.92 ± 8.18 | 6.5–40 |
Elements | DIPTE | Rfd | HRI |
---|---|---|---|
As | 6 × 10−8 | 3 × 10−4 | 2 × 10−4 |
Cd | 4 × 10−6 | 5 × 10−3 | 8 × 10−4 |
Co | 2 × 10−6 | 5 × 10−3 | 5 × 10−4 |
Cr | 1 × 10−5 | 2 × 10−0 | 1 × 10−5 |
Cu | 3 × 10−4 | 4 × 10−2 | 7 × 10−3 |
Ni | 2 × 10−4 | 2 × 10−2 | 1 × 10−2 |
Pb | 2 × 10−5 | 4 × 10−3 | 4 × 10−3 |
Sb | 6 × 10−7 | 4 × 10−3 | 1 × 10−4 |
Tl | 6 × 10−6 | 3 × 10−4 | 2 × 10−4 |
U | 4 × 10−6 | 3 × 10−3 | 1 × 10−3 |
V | 4 × 10−6 | 9 × 10−3 | 5 × 10−4 |
Zn | 1 × 10−3 | 3 × 10−1 | 5 × 10−3 |
Elements | Valdichiana Soils | Soil Background Southern Tuscany | Soil Background Italy | ||
---|---|---|---|---|---|
Min | Max | Mean ± std. dev. | |||
As | 5.4 | 24.2 | 10.9 ± 6.8 | 18.0 | 41 |
Cd | 0.12 | 0.23 | 0.18 ± 0.04 | 0.87 | 0.44 |
Co | 9.0 | 25.7 | 15.8 ± 5.5 | 17.3 | 14 |
Cr | 46.3 | 124.8 | 87.6 ± 29.8 | 132.5 | 95 |
Cu | 29.8 | 90.1 | 50.2 ± 18.8 | 36.3 | 24 |
Ni | 39.0 | 92.5 | 66.8 ± 17.1 | 74.6 | 50 |
Pb | 20.8 | 51.4 | 29.2 ± 9.7 | 32.0 | 26 |
Sb | 0.49 | 1.07 | 0.66 ± 0.21 | 2.1 | 0.77 |
Tl | 0.26 | 0.63 | 0.44 ± 0.13 | 0.34 | 0.83 |
U | 1.3 | 2.04 | 1.68 ± 0.26 | 2.4 | 3.17 |
V | 62.6 | 110.7 | 81.7 ± 16.2 | 96.5 | 76 |
Zn | 55.0 | 120.5 | 78.5 ± 18.9 | 116.7 | 68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vannini, A.; Grattacaso, M.; Canali, G.; Nannoni, F.; Di Lella, L.A.; Protano, G.; Biagiotti, S.; Loppi, S. Potentially Toxic Elements (PTEs) in Soils and Bulbs of Elephant Garlic (Allium ampeloprasum L.) Grown in Valdichiana, a Traditional Cultivation Area of Tuscany, Italy. Appl. Sci. 2021, 11, 7023. https://doi.org/10.3390/app11157023
Vannini A, Grattacaso M, Canali G, Nannoni F, Di Lella LA, Protano G, Biagiotti S, Loppi S. Potentially Toxic Elements (PTEs) in Soils and Bulbs of Elephant Garlic (Allium ampeloprasum L.) Grown in Valdichiana, a Traditional Cultivation Area of Tuscany, Italy. Applied Sciences. 2021; 11(15):7023. https://doi.org/10.3390/app11157023
Chicago/Turabian StyleVannini, Andrea, Martina Grattacaso, Giulia Canali, Francesco Nannoni, Luigi Antonello Di Lella, Giuseppe Protano, Stefano Biagiotti, and Stefano Loppi. 2021. "Potentially Toxic Elements (PTEs) in Soils and Bulbs of Elephant Garlic (Allium ampeloprasum L.) Grown in Valdichiana, a Traditional Cultivation Area of Tuscany, Italy" Applied Sciences 11, no. 15: 7023. https://doi.org/10.3390/app11157023
APA StyleVannini, A., Grattacaso, M., Canali, G., Nannoni, F., Di Lella, L. A., Protano, G., Biagiotti, S., & Loppi, S. (2021). Potentially Toxic Elements (PTEs) in Soils and Bulbs of Elephant Garlic (Allium ampeloprasum L.) Grown in Valdichiana, a Traditional Cultivation Area of Tuscany, Italy. Applied Sciences, 11(15), 7023. https://doi.org/10.3390/app11157023