Establishment of an In Vivo Xenograft Mouse Model of a Subcutaneous Submillimeter HT-29 Tumor Formed from a Single Spheroid Transplanted Using Radiation-Crosslinked Gelatin Hydrogel Microwell
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of rGHM Arrays
2.2. Cell Cultivation and Culture of Spheroids
2.3. Xenograft Mouse Model of a Submillimeter Subcutaneous Tumor
2.3.1. Experiment 1
2.3.2. Experiment 2
2.4. In Vivo Observation of Tumor Growth
2.5. Statistical Analysis
3. Results
3.1. Formation of HT-29-RFP Spheroids on the rGHM Array
3.2. Observation of an In Vivo Model of a Subcutaneous Submillimeter Xenograft Tumor
3.2.1. Experiment 1
3.2.2. Experiment 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Sloothaak, D.A.; Sahami, S.; van der Zaag-Loonen, H.J.; van der Zaag, E.S.; Tanis, P.J.; Bemelman, W.A.; Buskens, C.J. The prognostic value of micrometastases and isolated tumour cells in histologically negative lymph nodes of patients with colorectal cancer: A systematic review and meta-analysis. Eur. J. Surg. Oncol. 2014, 40, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Georges, L.M.C.; De Wever, O.; Galván, J.A.; Dawson, H.; Lugli, A.; Demetter, P.; Zlobec, I. Cell line derived xenograft mouse models are a suitable in vivo model for studying tumor budding in colorectal cancer. Front. Med. 2019, 6, 139. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, S.; Matsuoka, Y.; Ichihara, H.; Yoshida, H.; Yoshida, K.; Ueoka, R. Therapeutic effects of autologous lymphocytes activated with trastuzumab for xenograft mouse models of human breast cancer. Biol. Pharm. Bull. 2013, 36, 861–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, H.I.; Okumura, M.; Matsumoto, Y. Therapeutic effects of hybrid liposomes against xenograft mouse model of colorectal cancer in vivo due to long-term accumulation. Anticancer Res. 2016, 36, 5875–5882. [Google Scholar]
- Yi, B.R.; Park, M.A.; Lee, H.R.; Kang, N.H.; Choi, K.J.; Kim, S.U.; Choi, K.C. Suppression of the growth of human colorectal cancer cells by therapeutic stem cells expressing cytosine deaminase and interferon-β via their tumor-tropic effect in cellular and xenograft mouse models. Mol. Oncol. 2013, 7, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Kingston, B.R.; Syed, A.M.; Ngai, J.; Sindhwani, S.; Chan, W.C.W. Assessing micrometastases as a target for nanoparticles using 3d microscopy and machine learning. Proc. Natl. Acad. Sci. USA 2019, 116, 14937–14946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taibi, A.; Albouys, J.; Jacques, J.; Perrin, M.-L.; Yardin, C.; Fontanier, S.D.; Bardet, S.M. Comparison of implantation sites for the development of peritoneal metastasis in a colorectal cancer mouse model using non-invasive bioluminescence imaging. PLoS ONE 2021, 14, e0220360. [Google Scholar] [CrossRef]
- Gremonprez, F.; Willaert, W.; Ceelen, W. Animal models of colorectal peritoneal metastasis. Pleura Peritoneum 2016, 1, 23–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, J.; Medina, J.C.; Collins, T.L.; Schmid-Alliana, A.; Schmid-Antomarchi, H.; Cambien, B.; Karimdjee, B.F.; Richard-Fiardo, P.; Bziouech, H.; Barthel, R.; et al. Organ-specific inhibition of metastatic colon carcinoma by cxcr3 antagonism. Br. J. Cancer 2009, 100, 1755–1764. [Google Scholar]
- Yoshii, Y.; Furukawa, T.; Aoyama, H.; Adachi, N.; Zhang, M.R.; Wakizaka, H.; Fujibayashi, Y.; Saga, T. Regorafenib as a potential adjuvant chemotherapy agent in disseminated small colon cancer: Drug selection outcome of a novel screening system using nanoimprinting 3-dimensional culture with hct116-rfp cells. Int. J. Oncol. 2016, 48, 1477–1484. [Google Scholar] [CrossRef] [PubMed]
- Rijal, G.; Li, W. A versatile 3d tissue matrix scaffold system for tumor modeling and drug screening. Sci. Adv. 2017, 3, e1700764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaral, R.L.F.; Miranda, M.; Marcato, P.D.; Swiech, K. Comparative analysis of 3d bladder tumor spheroids obtained by forced floating and hanging drop methods for drug screening. Front. Physiol. 2017, 8, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.M.; Park, D.Y.; Yang, L.; Kim, E.J.; Ahrberg, C.D.; Lee, K.B.; Chung, B.G. Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening. Sci. Rep. 2018, 8, 17145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Kumacheva, E. Hydrogel microenvironments for cancer spheroid growth and drug screening. Sci. Adv. 2018, 4, eaas8998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyama, T.G.; Kimura, A.; Nagasawa, N.; Oyama, K.; Taguchi, M. Development of advanced biodevices using quantum beam microfabrication technology. Quantum Beam Sci. 2020, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Oyama, T.G.; Oyama, K.; Kimura, A.; Yoshida, F.; Ishida, R.; Yamazaki, M.; Miyoshi, H.; Taguchi, M. Collagen hydrogels with controllable combined cues of elasticity and topography to regulate cellular processes. Biomed. Mater. 2021, 16, 045037. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, M.; Galvani, S.; Canivet, C.; Kamar, N.; Bohler, T. Reconstitution of immunodeficient scid/beige mice with human cells: Applications in preclinical studies. Toxicology 2008, 246, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Okada, S.; Vaeteewoottacharn, K.; Kariya, R. Application of highly immunocompromised mice for the establishment of patient-derived xenograft (pdx) models. Cells 2019, 8, 889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, D.; Eide, P.; Eilertsen, I.; Danielsen, S.; Eknaes, M.; Hektoen, M.; Lind, G.; Lothe, R. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2013, 2, e71. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tachibana, T.; Oyama, T.G.; Yoshii, Y.; Hihara, F.; Igarashi, C.; Tsuji, A.B.; Higashi, T.; Taguchi, M. Establishment of an In Vivo Xenograft Mouse Model of a Subcutaneous Submillimeter HT-29 Tumor Formed from a Single Spheroid Transplanted Using Radiation-Crosslinked Gelatin Hydrogel Microwell. Appl. Sci. 2021, 11, 7031. https://doi.org/10.3390/app11157031
Tachibana T, Oyama TG, Yoshii Y, Hihara F, Igarashi C, Tsuji AB, Higashi T, Taguchi M. Establishment of an In Vivo Xenograft Mouse Model of a Subcutaneous Submillimeter HT-29 Tumor Formed from a Single Spheroid Transplanted Using Radiation-Crosslinked Gelatin Hydrogel Microwell. Applied Sciences. 2021; 11(15):7031. https://doi.org/10.3390/app11157031
Chicago/Turabian StyleTachibana, Tomoko, Tomoko Gowa Oyama, Yukie Yoshii, Fukiko Hihara, Chika Igarashi, Atsushi B Tsuji, Tatsuya Higashi, and Mitsumasa Taguchi. 2021. "Establishment of an In Vivo Xenograft Mouse Model of a Subcutaneous Submillimeter HT-29 Tumor Formed from a Single Spheroid Transplanted Using Radiation-Crosslinked Gelatin Hydrogel Microwell" Applied Sciences 11, no. 15: 7031. https://doi.org/10.3390/app11157031
APA StyleTachibana, T., Oyama, T. G., Yoshii, Y., Hihara, F., Igarashi, C., Tsuji, A. B., Higashi, T., & Taguchi, M. (2021). Establishment of an In Vivo Xenograft Mouse Model of a Subcutaneous Submillimeter HT-29 Tumor Formed from a Single Spheroid Transplanted Using Radiation-Crosslinked Gelatin Hydrogel Microwell. Applied Sciences, 11(15), 7031. https://doi.org/10.3390/app11157031