Microwave and Ultrasound Based Methods in Sludge Treatment: A Review
Abstract
:1. Introduction—General Aspects of Sludge
2. Efficiency Indicators
3. Principles of Chemical Treatments: Alkaline and H2O2
4. Microwave Irradiation
4.1. Microwave-Alkaline Combined Treatment
4.2. Microwave—H2O2 Combined Treatment
5. Ultrasound Treatment
5.1. Ultrasound-Alkaline Combined Treatment
5.2. Ultrasound—H2O2 Combined Treatment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, W.Q.; Yang, S.S.; Xiang, W.S.; Wang, X.J.; Ren, N.Q. Minimization of excess sludge production by in-situ activated sludge treatment processes—A comprehensive review. Biotechnol. Adv. 2013, 31, 1386–1396. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, G.; Wang, W. Ultrasonic treatment of biological sludge: Floc disintegration, cell lysis and inactivation. Bioresour. Technol. 2007, 98, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Campos, J.L.; Otero, L.; Franco, A.; Mosquera-Corral, A.; Roca, E. Ozonation strategies to reduce sludge production of a seafood industry WWTP. Bioresour. Technol. 2009, 100, 1069–1073. [Google Scholar] [CrossRef]
- Pooja, G.; Goldy, S.; Shivali, S.; Lakhveer, S.; Virendra, K.V. Biogas production from waste: Technical overview, progress, and challenges. In Bioreactors: Sustainable Design and Industrial Applications in Mitigation of GHG Emissions; Singh, L., Yousuf, A., Mahapatra, D.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 978-0-12-821264-6. [Google Scholar]
- Wang, Q.H.; Kuninobu, M.; Kakimoto, K.; Ogawa, H.I.; Kato, Y. Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pretreatment. Bioresour. Technol. 1999, 68, 309–313. [Google Scholar] [CrossRef]
- Pérez-Elvira, S.; Fdz-Polanco, M.; Plaza, F.I.; Garralón, G.; Fdz-Polanco, F. Ultrasound pre-treatment for anaerobic digestion improvement. Water Sci. Technol. 2009, 60, 1525–1532. [Google Scholar] [CrossRef]
- Onyeche, T.I.; Schäfler, O.; Bormann, H.; Schröder, C.; Sievers, M. Ultrasonic cell disruption of stabilized sludge with subsequent anaerobic digestion. Ultrasonics 2002, 40, 31–35. [Google Scholar] [CrossRef]
- Ipsita, R.; Munishwar, N. Applications of microwaves in biological sciences. Curr. Sci. 2003, 85, 1685–1693. [Google Scholar]
- Sinisterra, J.V. Application of ultrasound to biotechnology: An overview. Ultrasonics 1992, 30, 180–185. [Google Scholar] [CrossRef]
- Hu, Z.; Grasso, D. Water Analysis—Chemical Oxygen Demand. In Encyclopedia of Analytical Science, 2nd ed.; Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; ISBN 978-0-12-369397-6. [Google Scholar]
- Beszédes, S.; László, Z.; Szabó, G.; Hodúr, C. Effects of microwave pretreatments on the anaerobic digestion of food industrial sewage sludge. Environ. Prog. Sustain. Energy 2011, 30, 486–492. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Liu, S. Water Quality Monitoring in Aquaculture. In Water Quality Monitoring and Management; Li, D., Liu, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 978-0-12-811330-1. [Google Scholar]
- Skórkowski, Ł.; Zielewicz, E.; Kawczyński, A.; Gil, B. Assessment of Excess Sludge Ultrasonic, Mechanical and Hybrid Pretreatment in Relation to the Energy Parameters. Water 2018, 10, 551. [Google Scholar] [CrossRef] [Green Version]
- Ren, W.C.; Zhou, Z.; Zhu, Y.Y.; Jiang, L.M.; Wei, H.J.; Niu, T.H.; Fu, P.H.; Qiu, Z. Effect of sulfate radical oxidation on disintegration of waste activated sludge. Int. Biodeter. Biodegr. 2015, 104, 384–390. [Google Scholar] [CrossRef]
- Silvestri, D.; Wacławek, S.; Gončuková, Z.; Padil, V.V.T.; Grübel, K.; Černík, M. A new method for assessment of the sludge disintegration degree with the use of differential centrifugal sedimentation. Environ. Technol. 2018, 40, 3086–3093. [Google Scholar] [CrossRef] [PubMed]
- Tesfamariam, E.H.; Ogbazghi, Z.M.; Annandale, J.G.; Gebrehiwot, Y. Cost-Benefit Analysis of Municipal Sludge as a Low-Grade Nutrient Source: A Case Study from South Africa. Sustainability 2020, 12, 9950. [Google Scholar] [CrossRef]
- Iticescu, C.; Georgescu, P.L.; Arseni, M.; Rosu, A.; Timofti, M.; Carp, G.; Cioca, L.I. Optimal Solutions for the Use of Sewage Sludge on Agricultural Lands. Water 2021, 13, 585. [Google Scholar] [CrossRef]
- Kim, J.; Park, C.; Kim, T.H.; Lee, M.; Kim, S.; Kim, S.W.; Lee, J. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 2003, 95, 271–275. [Google Scholar] [CrossRef]
- Ayesha, M.; Zeashan, M.B.; Mariam, S.; Sher, J.K. Enhancing methane production from dewatered waste activated sludge through alkaline and photocatalytic pretreatment. Bioresour. Technol. 2021, 325, 124677. [Google Scholar] [CrossRef]
- Erkan, H.S.; Engin, G.O. A comparative study of waste activated sludge disintegration by electrochemical pretreatment process combined with hydroxyl and sulfate radical based oxidants. J. Environ. Chem. Eng. 2020, 8, 103918. [Google Scholar] [CrossRef]
- Şahinkaya, S.; Sevimli, M.F. Synergistic effects of sono-alkaline pretreatment on anaerobic biodegradability of waste activated sludge. J. Ind. Eng. Chem. 2013, 19, 197–206. [Google Scholar] [CrossRef]
- Penaud, V.; Delgenès, J.P.; Moletta, R. Thermo-chemical pretreatment of a microbial biomass: Influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enzym. Microb. Technol. 1999, 25, 258–263. [Google Scholar] [CrossRef]
- Foladori, P.; Andreottola, G.; Ziglio, G. Sludge Reduction Technologies in Wastewater Treatment Plants; IWA Publishing: London, UK, 2010; ISBN 978-1-78-040170-6. [Google Scholar]
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Liu, X.; Wang, C.; Zhu, T.; Lv, Q.; Che, D. Simultaneous removal of SO2 and NOx with radical ·OH from the catalytic decomposition of H2O2 over Fe-Mo mixed oxides. J. Hazard. Mater. 2021, 404, 123936. [Google Scholar] [CrossRef]
- Zhen, G.; Lu, X.; Kato, H.; Zhao, Y.; Li, Y.-Y. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renew. Sustain. Energy Rev. 2017, 69, 559–577. [Google Scholar] [CrossRef]
- Şahinkaya, S.; Kalipci, E.; Aras, S. Disintegration of waste activated sludge by different applications of Fenton process. Process. Saf. Environ. Prot. 2015, 93, 274–281. [Google Scholar] [CrossRef]
- Neas, E.D.; Collins, M.J. Microwave heating: Theoretical concepts and equipment design. In Introduction to Microwave Sample Preparation, Theory and Practice, 1st ed.; Kingston, H.M., Jassie, L.B., Eds.; American Chemical Society: Washington, DX, USA, 1988; ISBN 978-0841214507. [Google Scholar]
- Verma, D.K.; Mahanti, N.K.; Thakur, M.; Chakraborty, S.K.; Srivastav, P.P. Microwave Heating: Alternative Thermal Process Technology for Food Application. In Emerging Thermal and Nonthermal Technologies in Food Processing, 1st ed.; Deepak, K.V., Naveen, K.M., Mamta, T., Subir, K.C., Prem, P.S., Eds.; Apple Academic Press: Palm Bay, FL, USA, 2020; pp. 25–67. ISBN 97-80429297335. [Google Scholar]
- Eskicioglu, C.; Kennedy, K.J.; Droste, R.L. Characterization of soluble organic matter of waste activated sludge before and after thermal pretreatment. Water Res. 2006, 40, 3725–3736. [Google Scholar] [CrossRef] [PubMed]
- Eskicioglu, C.; Terzian, N.; Kennedy, K.J.; Droste, R.L.; Hamoda, M. Athermal microwave effects for enhancing digestibility of waste activated sludge. Water Res. 2007, 41, 2457–2466. [Google Scholar] [CrossRef] [PubMed]
- Morte, M.; Dean, J.; Kitajima, H.; Hascakir, B. Increasing the Penetration Depth of Microwave Radiation Using Acoustic Stress to Trigger Piezoelectricity. Energy Fuel 2019, 33, 6327–6334. [Google Scholar] [CrossRef]
- Ahn, J.H.; Shin, S.G.; Hwang, S. Effect of microwave irradiation on the disintegration and acidogenesis of municipal secondary sludge. Chem. Eng. J. 2009, 153, 145–150. [Google Scholar] [CrossRef]
- Hong, S.M.; Park, J.K.; Teeradej, N.; Lee, Y.O.; Cho, Y.K.; Park, C.H. Pretreatment of sludge with microwaves for pathogen destruction and improved anaerobic digestion performance. Water Environ. Res. 2006, 78, 76–83. [Google Scholar] [CrossRef]
- Eskicioglu, C.; Kennedy, K.J.; Droste, R.L. Enhancement of batch waste activated sludge digestion by microwave pretreatment. Water Environ. Res. 2007, 79, 2304–2317. [Google Scholar] [CrossRef]
- Gil, A.; Siles, J.A.; Toledo, M.; Martin, M.A. Effect of microwave pretreatment on centrifuged and floated sewage sludge derived from wastewater treatment plants. Process. Saf. Environ. 2019, 128, 251–258. [Google Scholar] [CrossRef]
- Eskicioglu, C.; Kennedy, K.J.; Droste, R.L. Enhanced disinfection and methane production from sewage sludge by microwave irradiation. Desalination 2009, 248, 279–285. [Google Scholar] [CrossRef]
- Alqaralleh, R.M.; Kennedy, K.; Delatolla, R. Microwave vs. alkaline-microwave pretreatment for enhancing Thickened Waste Activated Sludge and fat, oil, and grease solubilization, degradation and biogas production. J. Environ. Manag. 2019, 233, 378–392. [Google Scholar] [CrossRef] [PubMed]
- Ebenezer, A.V.; Arulazhagan, P.; Adish Kumar, S.; Yeom, I.-T.; Rajesh Banu, J. Effect of deflocculation on the efficiency of low-energy microwave pretreatment and anaerobic biodegradation of waste activated sludge. Appl. Energy 2015, 145, 104–110. [Google Scholar] [CrossRef]
- Park, B.; Ahn, J.H.; Kim, J.; Hwang, S. Use of microwave pretreatment for enhanced anaerobiosis of secondary sludge. Water Sci. Technol. 2004, 50, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Mesfin Yeneneh, A.; Kanti Sen, T.; Chong, S.; Ming Ang, H.; Kayaalp, A. Effect of Combined Microwave-Ultrasonic Pretreatment on Anaerobic Biodegradability of Primary, Excess Activated and Mixed Sludge. Comput. Water Energy Environ. Eng. 2013, 2, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.J.; Tyagi, V.K.; Lo, S.L. Effects of microwave and alkali induced pretreatment on sludge solubilization and subsequent aerobic digestion. Bioresour. Technol. 2011, 102, 7633–7640. [Google Scholar] [CrossRef]
- Dogan, I.; Sanin, F.D. Alkaline solubilization and microwave irradiation as a combined sludge disintegration and minimization method. Water Res. 2009, 43, 2139–2148. [Google Scholar] [CrossRef]
- Qiao, W.; Wang, W.; Xun, R.; Lu, W.J.; Yin, K.Q. Sewage sludge hydrothermal treatment by microwave irradiation combined with alkali addition. J. Mater. Sci. 2008, 43, 2431–2436. [Google Scholar] [CrossRef]
- Yang, Q.; Yi, J.; Luo, K.; Jing, X.L.; Li, X.M.; Liu, Y.; Zeng, G.M. Improving disintegration and acidification of waste activated sludge by combined alkaline and microwave pretreatment. Process. Saf. Environ. 2013, 91, 521–526. [Google Scholar] [CrossRef]
- Chi, Y.Z.; Li, Y.Y.; Fei, X.N.; Wang, S.P.; Yuan, H.Y. Enhancement of thermophilic anaerobic digestion of thickened waste activated sludge by combined microwave and alkaline pretreatment. J. Environ. Sci. 2011, 23, 1257–1265. [Google Scholar] [CrossRef]
- Jang, J.H.; Ahn, J.H. Effect of microwave pretreatment in presence of NaOH on mesophilic anaerobic digestion of thickened waste activated sludge. Bioresour. Technol. 2013, 131, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Beszédes, S.; Jákói, Z.; Lemmer, B.; Hodúr, C. Enhanced biodegradability of dairy sludge by microwave assisted alkaline and acidic pre-treatments. Rev. Agric. Rural Dev. 2018, 7, 92–97. [Google Scholar] [CrossRef]
- Lemmer, B.; Veszelovszki-Kovacs, P.; Hodur, C.; Beszedes, S. Microwave-alkaline treatment for enhanced disintegration and biodegradability of meat processing sludge. Desalin. Water Treat. 2017, 98, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, V.K.; Lo, S.L. Enhancement in mesophilic aerobic digestion of waste activated sludge by chemically assisted thermal pretreatment method. Bioresour. Technol. 2012, 119, 105–113. [Google Scholar] [CrossRef]
- Eskicioglu, C.; Prorot, A.; Marin, J.; Droste, R.L.; Kennedy, K.J. Synergetic pretreatment of sewage sludge by microwave irradiation in presence of H(2)O(2) for enhanced anaerobic digestion. Water Res. 2008, 42, 4674–4682. [Google Scholar] [CrossRef] [PubMed]
- Ersin, Y.Y.; Haci, D. Factors Affecting Decomposition of Hydrogen Peroxide. In Proceedings of the XIIth. International Mineral Processing Symposium, Cappadocia-Nevşehir, Turkey, 6–8 October 2010. [Google Scholar] [CrossRef]
- Wong, W.T.; Chan, W.I.; Liao, P.H.; Lo, K.V.; Mavinic, D.S. Exploring the role of hydrogen peroxide in the microwave advanced oxidation process: Solubilization of ammonia and phosphates. J. Environ. Eng. Sci. 2006, 5, 459–465. [Google Scholar] [CrossRef]
- Yin, G.Q.; Liao, P.H.; Lo, K.V. An ozone/hydrogen peroxide/microwave-enhanced advanced oxidation process for sewage sludge treatment. J. Environ. Sci Health A 2007, 42, 1177–1181. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, H.W.; Philip, L.; Suraishkumar, G.K.; Karthikaichamy, A.; Sen, T.K. Anaerobic co-digestion of activated sludge and fruit and vegetable waste: Evaluation of mixing ratio and impact of hybrid (microwave and hydrogen peroxide) sludge pre- treatment on two-stage digester stability and biogas yield. J. Water Process. Eng. 2020, 37, 101498. [Google Scholar] [CrossRef]
- Eswari, P.; Kavitha, S.; Kaliappan, S.; Yeom, I.T.; Banu, J.R. Enhancement of sludge anaerobic biodegradability by combined microwave-H2O2 pretreatment in acidic conditions. Environ. Sci. Pollut. R 2016, 23, 13467–13479. [Google Scholar] [CrossRef] [PubMed]
- Mcclements, D.J. Advances in the Application of Ultrasound in Food Analysis and Processing. Trends Food Sci. Technol. 1995, 6, 293–299. [Google Scholar] [CrossRef]
- Tronson, R.; Ashokkumar, M.; Grieser, F. Comparison of the effects of water-soluble solutes on multibubble sonoluminescence generated in aqueous solutions by 20-and 515-kHz pulsed ultrasound. J. Phys. Chem. B 2002, 106, 11064–11068. [Google Scholar] [CrossRef]
- Mason, T.J.; Lorimer, J.P. General Principles. In Applied Sonochemistry; Timothy, J.M., John, P.L., Eds.; Wiley: Hoboken, NJ, USA, 2002; pp. 25–74. [Google Scholar] [CrossRef]
- Ashokkumar, M. The characterization of acoustic cavitation bubbles—An overview. Ultrason. Sonochem. 2011, 18, 864–872. [Google Scholar] [CrossRef] [PubMed]
- Tiehm, A.; Nickel, K.; Zellhorn, M.; Neis, U. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Res. 2001, 35, 2003–2009. [Google Scholar] [CrossRef]
- Bougrier, C.; Carrere, H.; Delgenes, J.P. Solubilisation of waste-activated sludge by ultrasonic treatment. Chem. Eng. J. 2005, 106, 163–169. [Google Scholar] [CrossRef]
- Chen, W.; Gao, X.H.; Xu, H.; Cai, Y.; Cui, J.F. Influence of extracellular polymeric substances (EPS) treated by combined ultrasound pretreatment and chemical re-flocculation on water treatment sludge settling performance. Chemosphere 2017, 170, 196–206. [Google Scholar] [CrossRef]
- Dewil, R.; Baeyens, J.; Goutvrind, R. The use of ultrasonics in the treatment of waste activated sludge. Chin. J. Chem. Eng. 2006, 14, 105–113. [Google Scholar] [CrossRef]
- Dhar, B.R.; Nakhla, G.; Ray, M.B. Techno-economic evaluation of ultrasound and thermal pretreatments for enhanced anaerobic digestion of municipal waste activated sludge. Waste Manag. 2012, 32, 542–549. [Google Scholar] [CrossRef]
- Tian, S.; Huang, S.C.; Zhu, Y.C.; Zhang, G.M.; Lian, J.F.; Liu, Z.W.; Zhang, L.A.; Qin, X.X. Effect of low-intensity ultrasound on partial nitrification: Performance, sludge characteristics, and properties of extracellular polymeric substances. Ultrason. Sonochem. 2021, 73. [Google Scholar] [CrossRef]
- Hogan, F.; Mormede, S.; Clark, P.; Crane, M. Ultrasonic sludge treatment for enhanced anaerobic digestion. Water Sci. Technol. 2004, 50, 25–32. [Google Scholar] [CrossRef]
- Bougrier, C.; Albasi, C.; Delgenes, J.P.; Carrere, H. Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chem. Eng. Process. 2006, 45, 711–718. [Google Scholar] [CrossRef] [Green Version]
- Dauknys, R.; Mazeikien, A.; Paliulis, D. Effect of ultrasound and high voltage disintegration on sludge digestion process. J. Environ. Manag. 2020, 270. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.; Ji, M. Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration. J. Hazard. Mater. 2005, 123, 145–150. [Google Scholar] [CrossRef]
- Kim, D.H.; Jeong, E.; Oh, S.E.; Shin, H.S. Combined (alkaline plus ultrasonic) pretreatment effect on sewage sludge disintegration. Water Res. 2010, 44, 3093–3100. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.L.; Liu, H.; Chen, J.H.; Du, G.C.; Chen, J. Enhancement of solubilization and acidification of waste activated sludge by pretreatment. Waste Manag. 2008, 28, 2614–2622. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.B.; Wang, C.; Trzcinski, A.P.; Lin, L.; Ng, W.J. Insights on the solubilization products after combined alkaline and ultrasonic pre-treatment of sewage sludge. J. Environ. Sci. 2015, 29, 97–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seng, B.; Khanal, S.K.; Visvanathan, C. Anaerobic digestion of waste activated sludge pretreated by a combined ultrasound and chemical process. Environ. Technol. 2010, 31, 257–265. [Google Scholar] [CrossRef]
- Bao, H.X.; Yang, H.; Zhang, H.; Liu, Y.C.; Su, H.Z.; Shen, M.L. Improving methane productivity of waste activated sludge by ultrasound and alkali pretreatment in microbial electrolysis cell and anaerobic digestion coupled system. Environ. Res. 2020, 180, 108863. [Google Scholar] [CrossRef]
- Rahdar, S.; Igwegbe, C.A.; Ghasemi, M.; Ahmadi, S. Degradation of aniline by the combined process of ultrasound and hydrogen peroxide (US/H2O2). MethodsX 2019, 6, 492–499. [Google Scholar] [CrossRef]
- Kida, M.; Ziembowicz, S.; Koszelnik, P. Removal of organochlorine pesticides (OCPs) from aqueous solutions using hydrogen peroxide, ultrasonic waves, and a hybrid process. Sep. Purif. Technol. 2018, 192, 457–464. [Google Scholar] [CrossRef]
- Nikfar, E.; Dehghani, M.H.; Mahvi, A.H.; Rastkari, N.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Removal of Bisphenol A from aqueous solutions using ultrasonic waves and hydrogen peroxide. J. Mol. Liq. 2016, 213, 332–338. [Google Scholar] [CrossRef]
- Yuan, D.H.; Zhou, X.; Jin, W.B.A.; Han, W.; Chi, H.Z.; Ding, W.Q.; Huang, Y.; He, Z.Q.; Gao, S.H.; Wang, Q.L. Effects of the Combined Utilization of Ultrasonic/Hydrogen Peroxide on Excess Sludge Destruction. Water 2021, 13, 266. [Google Scholar] [CrossRef]
Type of Treatment | Efficiency Indicator | Results | Reference |
---|---|---|---|
MW | SCOD/TCOD | 2% to 22% increment | Ahn et al., 2009 |
MW | SCOD/TCOD | 8% to 18% increment | Hong et al., 2006 |
MW | COD/TVS | up to 43–66% increment | Gil et al., 2019 |
MW + Alkaline | DD | 65.9% at 38,400 kJ/TS, pH = 11 | Yang et al., 2013 |
MW + Alkaline | SCOD/TCOD | 0.38 at pH = 12 | Dogan and Sanin, 2009 |
MW + Alkaline | SCOD/TCOD | 0.33 at pH = 12, 230 kJ/L | Beszédes et al., 2018 |
MW + H2O2 | SCOD | from 5000 mg/L to 10,000 mg/L | Yin et al., 2007 |
MW + H2O2 | solubilization rate | from 30% to 50% | Parvathy et al., 2016 |
Type of Treatment | Efficiency Indicator | Results | Reference |
---|---|---|---|
US | solubilization of organic matter | 29% at 15.000 kJ/kg TS | Bougrier et al., 2005 |
US | CH4 content in biogas | from 54% to 72% | Dauknys et al., 2020 |
US + Alkaline | SCOD | ~2200 mg/L, pH = 12 | Wang et al., 2005 |
US + Alkaline | solubilization of proteins | 67% with NaOH | Liu et al., 2008 |
US + Alkaline | rate of biodegradability | 21% increment, 21 kJ/kg TS, 0.05 mol/L alkaline | Tian et al., 2015 |
US + Alkaline | CH4 production rate | 0.15 m3 CH4/m3 reactor/day | Bao et al., 2020 |
US + H2O2 | ∆SCOD DD | 3662.78 mg/L 28.61% | Yuan et al., 2021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jákói, Z.; Lemmer, B.; Hodúr, C.; Beszédes, S. Microwave and Ultrasound Based Methods in Sludge Treatment: A Review. Appl. Sci. 2021, 11, 7067. https://doi.org/10.3390/app11157067
Jákói Z, Lemmer B, Hodúr C, Beszédes S. Microwave and Ultrasound Based Methods in Sludge Treatment: A Review. Applied Sciences. 2021; 11(15):7067. https://doi.org/10.3390/app11157067
Chicago/Turabian StyleJákói, Zoltán, Balázs Lemmer, Cecilia Hodúr, and Sándor Beszédes. 2021. "Microwave and Ultrasound Based Methods in Sludge Treatment: A Review" Applied Sciences 11, no. 15: 7067. https://doi.org/10.3390/app11157067
APA StyleJákói, Z., Lemmer, B., Hodúr, C., & Beszédes, S. (2021). Microwave and Ultrasound Based Methods in Sludge Treatment: A Review. Applied Sciences, 11(15), 7067. https://doi.org/10.3390/app11157067