Validation of Eye Temperature Assessed Using Infrared Thermography as an Indicator of Welfare in Horses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Animals
2.3. Infrared Thermography
2.4. RT, HR, and RR
2.5. Data Analysis
- (1)
- Find the three points representing the maximum temperature in the three areas (lacrimal sac, medial canthus, and lateral canthus).
- (2)
- One 4 × 4 pixel area including the maximum temperature is defined as one ROI, and three ROIs are measured per image.
- (3)
- 2 × 2 pixels indicates the center area of 4 × 4 pixels.
2.6. Statistical Analysis
3. Results
3.1. Correlation between ET, RT, HR, and RR
3.2. Efficacy of IRT in Assessing the Temperature of the Horse’s Eyes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Shin, S.K.; Kim, S.M.; Lioyd, S.; Cho, G.J. Prevalence of hoof disorders in horses in South Korea. Open Agr. J. 2020, 14, 25–29. [Google Scholar] [CrossRef]
- Seo, M.G.; Yun, S.H.; Choi, S.K. Seroprevalence of equine piroplasms in the Republic of Korea. Vet. Parasitol. 2011, 179, 224–226. [Google Scholar] [CrossRef] [PubMed]
- Etim, N.N.; Williams, M.E.; Evans, E.I.; Offiong, E.E.A. Physiological and behavioral responses of farm animals to stress: Implication to animal productivity. Am. J. Adv. Agric. Res. 2013, 1, 153–161. [Google Scholar]
- van der Kolk, J.H.; Nachreiner, R.F.; Schott, H.C.; Refsal, K.R.; Zanella, A.J. Salivary and plasma concentration of cortisol in normal horses and horses with Cushing’s disease. Equine Vet. J. 2001, 33, 211–213. [Google Scholar] [CrossRef]
- Peeters, M.; Sulon, J.; Beckers, J.F.; Ledoux, D.; Vandeheede, M. Comparison between blood serum and salivary cortisol concentrations in horses using an adrenocorticotropic hormone challenge. Equine Vet. J. 2011, 43, 487–493. [Google Scholar] [CrossRef]
- Peeters, M.; Sulon, J.; Serteyn, D.; Vandeheede, M. Assessment of stress level in horses during competition using salivary cortisol: Preliminary studies. J. Vet. Behav. Clin. Appl. Res. 2010, 5, 216. [Google Scholar] [CrossRef]
- Schmidt, A.; Möstl, E.; Wehnert, C.; Aurich, J.; Müller, J.; Aurich, C. Cortisol release and heart rate variability in horses during road transport. Horm. Behav. 2010, 57, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Kay, R.; Hall, C.A. The use of a mirror reduces isolation stress in horses being transported by trailer. Appl. Anim. Behav. Sci. 2009, 116, 237–243. [Google Scholar] [CrossRef]
- Stewart, M.; Webster, J.R.; Schaefer, A.L.; Cook, N.J.; Scott, S.L. Infra-red thermography as a non-invasive tool to study animal welfare. Anim. Welf. 2005, 14, 319–325. [Google Scholar]
- Travain, T.; Colombo, E.S.; Heinzl, E.; Bellucci, D.; Prato Previde, E.; Valsecchi, P. Hot dogs: Thermography in the assessment of stress in dog (Canis familiaris)-A pilot study. J. Vet. Behav. 2015, 10, 17–23. [Google Scholar] [CrossRef]
- Eddy, A.L.; Van Hoogmoed, L.M.; Snyder, J.R. The role of thermography in the management of equine lameness. Vet. J. 2001, 162, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Smith, W.M. Applications of the thermography in veterinary medicine. Ann. N. Y. Acad. Sci. 1964, 121, 248–254. [Google Scholar] [CrossRef]
- Turner, T.A. Thermography as an aid to the clinical lameness evaluation. Vet. Clin. N. Am. Equine Pract. 1991, 7, 311–338. [Google Scholar] [CrossRef]
- Bartolomé, E.; Sánchez, M.J.; Molina, A.; Schaefer, A.L.; Cervantes, I.; Valera, M. Using eye temperature and heart rate for stress assessment in young horses competing in jumping competitions and its possible influence on sport performance. Animal 2013, 7, 2044–2053. [Google Scholar] [CrossRef]
- Dai, F.; Cogi, N.H.; Heinzl, E.U.L.; Dalla Costa, E.; Canali, E.; Minero, M. Validation of a fear test in sport horses using infrared thermography. J. Vet. Behav. 2015, 10, 128–136. [Google Scholar] [CrossRef]
- Riemer, S.; Assis, L.; Pike, T.W.; Mills, D.S. Dynamic changes in ear temperature in relation to separation distress in dogs. Physiol. Behav. 2016, 167, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Edgar, J.L.; Nicol, C.J.; Pugh, C.A.; Paul, E.S. Surface temperature changes in response to handling in domestic chickens. Physiol. Behav. 2013, 119, 195–200. [Google Scholar] [CrossRef] [PubMed]
- McManus, C.; Tanure, C.B.; Peripolli, V.; Seixas, L.; Fischer, V.; Gabbi, A.M.; Menegassi, S.R.O.; Stumpf, M.T.; Kolling, G.J.; Dias, E.; et al. Infrared thermography in animal production: An overview. Comput. Electron. Agric. 2016, 123, 10–16. [Google Scholar] [CrossRef]
- Piccinini, F.; Martinelli, G.; Carbonaro, A. Reliability of body temperature measurements obtained with contactless infrared point thermometers commonly used during the COVID-19 pandemic. Sensors 2021, 21, 3794. [Google Scholar] [CrossRef] [PubMed]
- Ring, E.F.J.; Ammer, K.; Wiecek, B.; Plassmann, P.; Jones, C.D.; Jung, A.; Murawski, P. Quality assurance for thermal imaging systems in medicine. Thermol. Int. 2007, 17, 103–106. [Google Scholar]
- Ijichi, C.; Evans, L.; Woods, H.; Yarnell, K. The right angle: Validating a standardised protocol for the use of infra-red thermography of eye temperature as a welfare indicator. Anim. Welf. 2020, 29, 123–131. [Google Scholar] [CrossRef]
- Jansson, A.; Lindgren, G.; Velie, B.D.; Sole, M. An investigation into factors influencing basal eye temperature in the domestic horse (Equus caballus) when measured using infrared thermography in field conditions. Physiol. Behav. 2020, 228, 113–118. [Google Scholar] [CrossRef]
- Trindade, P.H.; de Camargo Ferraz, G.; Pereira Lima, M.L.; Negrão, J.A.; Paranhos da Costa, M.J.R. Eye surface temperature as a potential indicator of physical fitness in ranch horses. J. Equine Vet. Sci. 2019, 75, 1–8. [Google Scholar] [CrossRef]
- Fenner, K.; Yoon, S.; White, P.; Starling, M.; McGreevy, P. The effect of noseband tightening on horses’ behavior, eye temperature, and cardiac responses. PLoS ONE 2016, 11, e0154179. [Google Scholar] [CrossRef]
- Church, J.S.; Hegadoren, P.R.; Paetkau, M.J.; Miller, C.C.; Regev-Shoshani, G.; Schaefer, A.L.; Schwartzkopf-Genswein, K.S. Influence of environmental factors on infrared eye temperature measurements in cattle. Res. Vet. Sci. 2014, 96, 220–226. [Google Scholar] [CrossRef]
- Herborn, K.A.; Graves, J.L.; Jerem, P.; Evans, N.P.; Nager, R.; McCafferty, D.J.; McKeegan, D.E.F. Skin temperature reveals the intensity of acute stress. Physiol. Behav. 2015, 152, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Stewart, M.; Webster, J.R.; Verkerk, G.A.; Schaefer, A.L.; Colyn, J.J.; Stafford, K.J. Non-invasive measurement of stress in dairy cows using infrared thermography. Physiol. Behav. 2007, 92, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, M.A.; Worth, G.M.; Dowling, S.K.; Lowe, G.L.; Cave, V.M.; Stewart, M. Evaluation of infrared thermography as a non-invasive method of measuring the autonomic nervous response in sheep. PLoS ONE 2020, 2020 15, e0233558. [Google Scholar] [CrossRef]
- Stewart, M.; Stafford, K.J.; Dowling, S.K.; Schaefer, A.L.; Webster, J.R. Eye temperature and heart rate variability of calves disbudded with or without local anaesthetic. Physiol. Behav. 2008, 93, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Cook, N.; Schaefer, A.; Warren, L.; Burwash, L.; Anderson, M.; Baron, V. Adrenocortical and metabolic responses to ACTH injection in horses: An assessment by salivary cortisol and infrared thermography of the eye. Can. J. Anim. Sci. 2001, 81, 621. [Google Scholar]
- Valera, M.; Bartolomé, E.; Sánchez, M.J.; Molina, A.; Cook, N.; Schaefer, A. Changes in eye temperature and stress assessment in horses during show jumping competitions. J. Equine Vet. Sci. 2012, 32, 827–830. [Google Scholar] [CrossRef]
- Bourlai, T.; Pryor, R.R.; Syyama, J.; Reis, S.E.; Hostler, D. Use of thermal imagery for estimation of core body temperature during precooling, exertion, and recovery in wildland firefighter protective clothing. Prehosp. Emerg. Care 2012, 16, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Zhang, H.Y.; Yoo, J.H.; Park, Y.S.; Song, H.J.; Yang, K.H. The correlation between tympanic membrane temperature and specific region of face temperature. Quant. Infrared Thermogr. J. 2019, 16, 1–7. [Google Scholar] [CrossRef]
- Otilia, C.; Tanase, A.; Miclaus, I. Digital infrared thermography in assessing soft tissues injuries on sport equines. Bull. USAMV-CN 2006, 63, 228–233. [Google Scholar] [CrossRef]
- Clark, J.A.; Cena, K. The Potential of infrared thermography in veterinary diagnosis. Vet. Rec. 1977, 100, 402–404. [Google Scholar] [CrossRef]
- Purohit, R.C.; McCoy, M.D.; Bergfeld, W.A. Thermographic diagnosis of Horner’s syndrome in the horse. Am. J. Vet. Res. 1980, 41, 1180–1182. [Google Scholar] [PubMed]
- Turner, T.A.; Purohit, R.C.; Fessler, J.F. Thermography: A review in equine medicine. Compend. Contin. Educ. Vet. 1986, 8, 855–862. [Google Scholar]
- Masko, M.; Krajewska, A.; Zdrojkowski, L.; Domino, M.; Gajewski, Z. An application of temperature mapping of horse’s back for leisure horse-rider-matching. Anim. Sci. J. 2019, 90, 1396–1406. [Google Scholar] [CrossRef] [PubMed]
- Yarnell, K.; Hall, C.; Billett, E. An assessment of the aversive nature of an animal management procedure (clipping) using behavioral and physiological measures. Physiol. Behav. 2013, 118, 32–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Environmental Factors | Month | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|---|
Ambient temperature (°C) | February | 7.2 | 11.8 | 9.03 | 1.72 |
November | 13.8 | 20.4 | 17.53 | 2.76 | |
December | 6.6 | 14.1 | 11.5 | 2.6 | |
January | 10.7 | 12.9 | 11.8 | 1.1 | |
Relative humidity (%) | February | 55.8 | 62.9 | 58.08 | 2.9 |
November | 45.9 | 76.8 | 58.03 | 13.46 | |
December | 45.9 | 74.3 | 56.56 | 9.54 | |
January | 51.1 | 55 | 53.05 | 1.95 |
(n = 176) | ET | RT | HR | RR | ||
---|---|---|---|---|---|---|
LS | MC | LC | ||||
Mean | 34.86 | 35.33 | 34.15 | 37.7 | 37 | 23.67 |
SD | 1.01 | 1.01 | 1.02 | 0.29 | 11.33 | 5.75 |
Min | 29.7 | 32.5 | 29.0 | 37 | 21 | 12 |
Max | 37.1 | 38.2 | 36.7 | 38.2 | 60 | 36 |
CV (%) | 2.18 | 2.14 | 2.25 | 1.01 | 31.25 | 36.98 |
CC | 0.3048 | 0.3392 | 0.2073 | 1.00 | 0.088 | 0.032 |
Total (n = 176) | 4 × 4 Pixels | 2 × 2 Pixels | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Max (°C) | RMSE | QRMSE | Mean (°C) | RMSE | QRMSE | Mean (°C) | RMSE | QRMSE | ||
Left | LS | 35.10 ± 1.02 | 2.49 | 2.35 | 34.94 ± 1.05 | 2.65 | 2.52 | 35.05 ± 1.05 | 2.60 | 2.47 |
MC | 35.72 ± 0.97 | 1.84 | 1.63 | 35.40 ± 1.05 | 2.14 | 1.96 | 35.56 ± 1.03 | 1.92 | 1.75 | |
LC | 34.42 ± 0.96 | 3.32 | 3.20 | 34.16 ± 1.07 | 3.53 | 3.42 | 34.28 ± 1.04 | 3.46 | 3.35 | |
Right | LS | 35.08 ± 0.92 | 2.56 | 2.50 | 34.90 ± 0.99 | 2.71 | 2.58 | 35.00 ± 0.98 | 2.67 | 2.54 |
MC | 35.78 ± 0.92 | 1.70 | 1.62 | 35.43 ± 1.01 | 2.04 | 1.84 | 35.63 ± 0.96 | 1.89 | 1.69 | |
LC | 34.56 ± 0.97 | 3.27 | 3.23 | 34.36 ± 1.01 | 3.45 | 3.34 | 34.46 ± 1.01 | 3.41 | 3.30 |
Total (n = 176) | 4 × 4 Pixels | 2 × 2 Pixels | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Max (°C) | RMSE | QRMSE | Mean (°C) | RMSE | QRMSE | Mean (°C) | RMSE | QRMSE | ||
Left | LS | 35.77 ± 0.85 | 0.9781 | 0.5379 | 35.59 ± 0.85 | 0.9809 | 0.5417 | 35.66 ± 0.83 | 0.9522 | 0.5165 |
MC | 35.77 ± 0.83 | 0.9646 | 0.4948 | 35.59 ± 0.87 | 1.0061 | 0.5398 | 35.66 ± 0.77 | 0.8939 | 0.4584 | |
LC | 35.77 ± 0.86 | 1.0198 | 0.5369 | 35.59 ± 0.86 | 1.0103 | 0.5370 | 35.66 ± 0.85 | 0.9881 | 0.5292 | |
Right | LS | 35.80 ± 0.84 | 0.9664 | 0.5116 | 35.62 ± 0.82 | 0.9543 | 0.5062 | 35.68 ± 0.82 | 0.9574 | 0.5086 |
MC | 35.80 ± 0.82 | 0.9151 | 0.5033 | 35.62 ± 0.81 | 0.9823 | 0.4902 | 35.68 ± 0.79 | 0.8664 | 0.4815 | |
LC | 35.80 ± 0.93 | 1.0412 | 0.6014 | 35.62 ± 0.89 | 1.0134 | 0.5717 | 35.68 ± 0.92 | 1.0398 | 0.5985 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-M.; Cho, G.-J. Validation of Eye Temperature Assessed Using Infrared Thermography as an Indicator of Welfare in Horses. Appl. Sci. 2021, 11, 7186. https://doi.org/10.3390/app11167186
Kim S-M, Cho G-J. Validation of Eye Temperature Assessed Using Infrared Thermography as an Indicator of Welfare in Horses. Applied Sciences. 2021; 11(16):7186. https://doi.org/10.3390/app11167186
Chicago/Turabian StyleKim, Su-Min, and Gil-Jae Cho. 2021. "Validation of Eye Temperature Assessed Using Infrared Thermography as an Indicator of Welfare in Horses" Applied Sciences 11, no. 16: 7186. https://doi.org/10.3390/app11167186
APA StyleKim, S. -M., & Cho, G. -J. (2021). Validation of Eye Temperature Assessed Using Infrared Thermography as an Indicator of Welfare in Horses. Applied Sciences, 11(16), 7186. https://doi.org/10.3390/app11167186