An Ontology to Model the International Rules for Multiple Primary Malignant Tumours in Cancer Registration
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Validation of Health Data
1.2. Data Validation Using OWL
1.3. Modelling of Multiple Primary Tumour (MPT) Rules
2. Materials and Methods
2.1. Multiple Primary Tumour Validation Rules
2.2. Morphology Pairing
- Test 1:
- Determine the single-entity morphology groups following conjunction of the two morphology categories. In case of a single group, infer the morphologies are equivalent by default;
- Test 2:
- Verify whether the category associated with one of the morphologies is a common one and infer the groups are equivalent if it can be ascertained that the other morphology is in a category associated with that common category. Furthermore, infer that the morphologies are in an equivalent group if either of the morphologies is in the category that is common to all other morphology categories;
- Test 3:
- For all positive equivalences, ascertain if the two morphologies are of haematological type and then infer that the tumours violate the MPT rules.
2.3. Topography Pairing
2.4. Ontology Structure
2.4.1. Terminological Part (TBox Axioms)
DuplicateTopographyGroup
Trapping Duplicate Primary Tumours
2.4.2. Assertional Part (ABox Axioms)
3. Results
3.1. Performance
3.2. DL Query Interface
- (a)
- one of the topography codes C768 in the tumour couplet is in the group common to all other topography groups and therefore a duplicate topography group condition, c.f. Axiom (4) and lines 5, 15, and 1 in Figure 12;
- (b)
- the morphology codes in the tumour couplet are identical since there is only one morphology code and therefore a duplicate morphology condition, c.f. Axiom (7) and lines 2, 14, and 13 in Figure 12;
- (c)
- the tumour couplet p1_tc3 is a duplicate tumour since it has both a duplicate topography condition as well as a duplicate morphology condition, c.f. Axiom (6) and line 7 in Figure 12;
- (d)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABox | Assertional part of a knowledge base; a set of concepts and role assertions. |
ALCOIQ | A specific DL expressivity incorporating: attributive language with complex concept negation, nominals, inverse properties, and qualified cardinality restrictions. |
CR | Cancer Registry; an entity that collects and analyses cancer cases. |
CWA | Closed World Assumption; according to which something not known to be true is false. |
DL | Description Logic; a structured knowledge-representation language. |
HER | Electronic Health Record. |
ENCR | European Network of Cancer Registries. |
EU | European Union. |
ICD-O-3 | International Classification of Diseases for Oncology, 3rd edition; provides a set of codes for describing tumours. |
MPT | Multiple Primary Tumour; describes CR patients having more than one independent primary tumour. |
NCIt | NCIthesaurus. |
NEXPTIME | Non-deterministic Exponential Time; computational complexity class for solving a particular set of problems. |
PSPACE | Polynomial Space; computational complexity class for solving a particular set of problems. |
OBO | Open Biological and Biomedical Ontologies Foundry. |
OWA | Open World Assumption; according to which something cannot be assumed to be false unless it has explicitly been stated as false. |
OWL | Web Ontology Language; a language specification for developing ontologies for the sematic web. |
OWL-API | OWL Application Programming Interface; a set of methods for interfacing a computer programme with an OWL ontology. |
RDF | Resource Description Framework. |
SHACL | Shapes Constraint Language. |
ShEx | Shape Expressions. |
SWRL | Semantic Web Rule Language. |
TBox | Terminology part of a knowledge base; a set of concepts and roles. |
URI | Uniform Resource Identifier; a unique identifier of a web resource. |
Appendix A
Category | Original Topography Groups Considered as Single Entities | Common Group of Topography Codes for the Associated Category |
---|---|---|
A | 1 (C00, C03, C04, C05, C06); 2 (C01, C02); 3 (C07); 4 (C08); 5(C09, C10, C12, C13, C19); 6 (C11); 42 (C69); 43 (C70); 44 (C71); 45 (C72); 46 (C73) | C760 |
B | 7 (C15) | C268, C269, C761 |
C | 8 (C16); 14 (C23, C24) | C268, C269, C762 |
D | 9 (C17); 10 (C18), 11 (C19, C20) | C26, C762 |
E | 12 (C21) | C26, C76 |
F | 13 (C22); 15 (C25) | C268, C762 |
G | 16 (C30); 17 (C31); 18 (C32) | C39, C760 |
H | 19 (C33, C34) | C39, C760, C761 |
I | 22 (C39) | C760, C761 |
J | 20 (C37); 28 (C50) | C761 |
K | 21 (C38) | C398, C761 |
L | 23 (C40, C41); 24 (C44); 25 (C47); 26 (C48); 27 (C49); 47 (C74); 48 (C75) | C76 |
M | 29 (C51); 30 (C52); 33 (C56); 49 (C55) | C578, C579, C763 |
N | 31 (C53); 32 (C54) | C55, C578, C579, C763 |
O | 34 (C57); 35 (C58), 39 (C63) | C763 |
P | 36 (C60); 37 (C61); 38 (C62) | C638, C639, C763 |
Q | 40 (C64) | C688 C689, C76 |
R | 41 (C65, C66, C67) | C68, C76 |
S | Common to all topography groups | C80, C768 |
Appendix B
Topography codes: c150:C150 c269:C269 c768:C768 Morphology codes: m9705_3:M_9705_3 m8020_3:M_8020_3 Tumours: p1_t1:ICDO3Tumour p1_t2:ICDO3Tumour p1_t3:ICDO3Tumour (p1_t1,m9705_3):hasMorphology ⊓ (p1_t1,c150):hasTopography (p1_t2,m8020_3):hasMorphology ⊓ (p1_t2,c269):hasTopography (p1_t3,m8020_3):hasMorphology ⊓ (p1_t3,c768):hasTopography Tumour permutations: p1_tpM1: TumourPermutationMorphology ⊓ ∃hasMorphology.(∃hasMorphology−.{p1_t1}) ⊓ ∃hasMorphology.(∃hasMorphology−.{p1_t2}) p1_tpT1: TumourPermutationTopography ⊓ ∃hasTopography.(∃hasTopography−.{p1_t1}) ⊓ ∃hasTopography.(∃hasTopography−.{p1_t2}) p1_tpM2: TumourPermutationMorphology ⊓ ∃hasMorphology.(∃hasMorphology−.{p1_t1}) ⊓ ∃hasMorphology.(∃hasMorphology−.{p1_t3}) p1_tpT2: TumourPermutationTopography ⊓ ∃hasTopography.(∃hasTopography−.{p1_t1}) ⊓ ∃hasTopography.(∃hasTopography−.{p1_t3}) p1_tpM3: TumourPermutationMorphology ⊓ ∃hasMorphology.ICDO3Morphology ⊓ ∀hasMorphology(∃hasMorphology−.{p1_t2}) p1_tpT3: TumourPermutationTopography ⊓ ∃hasTopography.(∃hasTopography−.{p1_t2}) ⊓ ∃hasTopography.(∃hasTopography−.{p1_t3}) Tumour couplets: p1_tc1:TumourCouplet p1_tc2:TumourCouplet p1_tc3:TumourCouplet (p1_tc1,p1_tpM1):hasTumourPermutationMorphology ⊓ (p1_tc1,p1_tpT1):hasTumourPermutationTopography (p1_tc2,p1_tpM2):hasTumourPermutationMorphology ⊓ (p1_tc2,p1_tpT2):hasTumourPermutationTopography (p1_tc3,p1_tpM3):hasTumourPermutationMorphology ⊓ (p1_tc3,p1_tpT3):hasTumourPermutationTopography Patient: p1:ENCRPatient (p1, p1_tc1):hasTumourCouplet ⊓ (p1, p1_tc2):hasTumourCouplet ⊓ (p1, p1_tc3):hasTumourCouplet | (A1) |
DUPLICATE_PRIMARY_CASE ≡ ∃hasTumourCouplet.DUPLICATE_PRIMARY_TUMOUR | (A2) |
Appendix C
Programme Flowcharts
References
- Muir, C.S.; Démaret, E.; Boyle, P. The cancer registry in cancer control: An overview. In The Role of the Registry in Cancer Control; IARC Scientific Publications No., 66, Parkin, D.M., Wagner, G., Muir, C.S., Eds.; IARC Publications, World Health Organization: Geneve, Switzerland, 1985; pp. 13–26. [Google Scholar]
- National Cancer Institute. Surveillance, Epidemiology, and End Results Program (SEER). Available online: https://seer.cancer.gov/icd-o-3/ (accessed on 9 September 2019).
- European Commission. European Cancer Information System (ECIS). 2018. Available online: https://ecis.jrc.ec.europa.eu (accessed on 4 July 2019).
- World Health Organization, CI5 Cancer Incidence in Five Continents. Available online: https://ci5.iarc.fr/Default.aspx (accessed on 8 October 2020).
- London School of Hygiene and Tropical Medicine. CONCORD Programme. Available online: https://csg.lshtm.ac.uk/research/themes/concord-programme/ (accessed on 8 October 2020).
- EUROCARE. Survival of Cancer Patients in Europe. Available online: https://www.eurocare.it (accessed on 8 October 2020).
- Martos, C.; Crocetti, E.; Visser, O.; Rous, B.; Giusti, F.; Cancer Data Quality Checks Working Group. A Proposal on Cancer Data Quality Checks: One Common Procedure for European Cancer Registries. JRC Technical Report, Version 1.1. 2018. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC105078/cancer_data_quality_checks_procedure_report_1.1_print_5_1.pdf (accessed on 15 January 2020).
- Giusti, F.; Martos, C.; Adriani, S.; Dyba, T.; von Voithenberg, L.V.; Neamtiu, L.; Carvalho, R.N.; Randi, G.; Dimitrova, N.; Nicholson, N. The JRC-ENCR Quality Check Software (QCS) for the Validation of Cancer Registry Data: User Compendium. JRC Technical Report version 1.8.1. 2019. Available online: https://encr.eu/sites/default/files/User_compendium_v1_8_1.pdf (accessed on 15 January 2020).
- W3C. Web Ontology Language (OWL). 2013. Available online: https://www.w3.org/OWL/ (accessed on 4 July 2019).
- Napolitano, G.; González-Beltrán, A.; Fox, C.; Marshall, A.; Finkelstein, A.; Mccarron, P. Biomedical Ontologies and Grid Computing—As New Resources for Cancer Registries. In Proceedings of the Second International Conference on Health Informatics, Porto, Portugal, 14–17 January 2009; pp. 512–517. [Google Scholar]
- Brüggemann, S. Rule Mining for Automatic Ontology Based Data Cleaning. In Progress in WWW Research and Development, Proceedings of the 10th Asia-Pacific Web Conference, Shenyang, China, 26–28 April 2008; Zhang, Y., Yu, G., Bertino, E., Xu, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 522–527. [Google Scholar]
- Napolitano, G.; Marshall, A.; Hamilton, P.; Fox, C.; Gavin, A. An Ontology-Based System for Information Extraction, Reasoning and Cancer Registration from Pathology Reports. In Abstracts from the NCRI Cancer Conference. 2012. Available online: https://abstracts.ncri.org.uk/abstract/an-ontology-based-system-for-information-extraction-reasoning-and-cancer-registration-from-pathology-reports-2/ (accessed on 6 July 2021).
- Esteban-Gil, A.; Fernandez-Breis, J.T.; Boeker, M. Analysis and visualization of disease course in a semantically-enabled cancer registry. J. Biomed. Semant. 2017, 8, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massicano, F.; Sasso, A.; Amaral-Silva, H.; Oleynik, M.; Nobrega, C.; Patrao, D.F. An Ontology for TNM Clinical Stage Inference. In Proceedings of the Brazilian Seminar on Ontologies (ONTOBRAS), São Paulo, Brazil, 8–11 September 2015; Freitas, F., Baiao, F., Eds.; CEUR-WS: Aachen, Germany, 2015. [Google Scholar]
- Nicholson, N.C.; Giusti, F.; Bettio, M.; Negrao Carvalho, R.; Dimitrova, N.; Dyba, T.; Flego, M.; Neamtiu, L.; Randi, G.; Martos, C. An ontology-based approach for developing a harmonised data-validation tool for European cancer registration. J. Biomed. Semant. 2021, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- International Association of Cancer Registries. International rules for multiple primary cancers. Asian Pac. J. Cancer Prev. 2005, 6, 104–106. [Google Scholar]
- Van Hoeven, L.R.; De Bruijne, M.C.; Kemper, P.F.; Koopman, M.M.; Rondeel, J.M.; Leyte, A.; Koffijberg, H.; Janssen, M.P.; Roes, K.C. Validation of multisource electronic health record data: An application to blood transfusion data. BMC Med. Inform. Decis. Mak. 2017, 17, 107. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Costa, C.; Schulz, S. Validating EHR clinical models using ontology patterns. J. Biomed. Inform. 2017, 76, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Maqbool, H.; Muhammad, A.; Taqdir, A.; Rahman, A.; Wajahat, A.K.; Arif, J.; Sungyoung, L.; Byeong, H.K.; Khalid, L. Data-driven knowledge acquisition, validation, and transformation into HL7 Arden Syntax. Artif. Intell. Med. 2018, 92, 51–70. [Google Scholar] [CrossRef]
- Maqbool, H.; Muhammad, A.; Khalid, M.M.; Taqdir, A.; Wajahat, A.K.; Muhammad, I.; Arif, J.; Sungyoung, L. Acquiring guideline-enabled data driven clinical knowledge model using formally verified refined knowledge acquisition method. Comput. Methods Programs Biomed. 2020, 197, 105701. [Google Scholar] [CrossRef]
- Muhammad, A.; Maqbool, H.; Wajahat, A.K.; Taqdir, A.; Sungyoung, L.; Eui-Nam, H.; Hafiz, F.A.; Arif, J.; Hassan, I.; Muhammad, I.; et al. Comprehensible knowledge model creation for cancer treatment decision making. Comput. Biol. Med. 2017, 82, 119–129. [Google Scholar] [CrossRef]
- Boeker, M.; França, F.; Bronsert, P.; Schulz, S. TNM-O: Ontology support for staging of malignant tumours. J. Biomed. Semant. 2016, 7, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sattler, U.; Stevens, R. Being Complex on the Left-Hand Side: General Concept Inclusions. Ontogenesis 2012. Available online: http://ontogenesis.knowledgeblog.org/1288 (accessed on 4 August 2021).
- Open Biological and Biomedical Ontology (OBO) Foundry. Available online: http://www.obofoundry.org/ (accessed on 6 July 2021).
- International Association of Cancer Registries (IACR). Check and Conversion Program. Available online: http://www.iacr.com.fr/index.php?option=com_content&view=article&id=72:iarccrgtools&catid=68&Itemid=445 (accessed on 6 July 2021).
- North Ammerican Association of Central Cancer Registries (NAACCR). Recommended Data Edits and Software Coordination of Standards. Available online: http://datadictionary.naaccr.org/default.aspx?c=4&Version=21 (accessed on 6 July 2021).
- World Health Organization. International Classification of Diseases for Oncology (ICD-O)—3rd Edition, 1st Revision. 2013. Available online: https://apps.who.int/iris/handle/10665/96612 (accessed on 6 July 2021).
- Musen, M.A.; Protégé Team. The Protégé Project: A Look Back and a Look Forward. AI Matters 2015, 1, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Horridge, M.; Bechhofer, S. The OWL API: A Java API for OWL Ontologies. Semant. Web 2011, 2, 11–21. [Google Scholar] [CrossRef]
- Baader, F.; Horrocks, I.; Lutz, C.; Sattler, U. An Introduction to Description Logic; Chapter 5; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Pan, J.Z. Requirements for a Semantic Web Rule Language. Available online: https://www.w3.org/2004/12/rules-ws/paper/51/ (accessed on 2 July 2021).
- Horrocks, I.; Patel-Schneider, P.F.; Boley, H.; Tabet, S.; Grosof, B.; Dean, M. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission 21 May 2004. Available online: https://www.w3.org/Submission/2004/SUBM-SWRL-20040521/ (accessed on 2 July 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicholson, N.C.; Giusti, F.; Bettio, M.; Negrao Carvalho, R.; Dimitrova, N.; Dyba, T.; Flego, M.; Neamtiu, L.; Randi, G.; Martos, C. An Ontology to Model the International Rules for Multiple Primary Malignant Tumours in Cancer Registration. Appl. Sci. 2021, 11, 7233. https://doi.org/10.3390/app11167233
Nicholson NC, Giusti F, Bettio M, Negrao Carvalho R, Dimitrova N, Dyba T, Flego M, Neamtiu L, Randi G, Martos C. An Ontology to Model the International Rules for Multiple Primary Malignant Tumours in Cancer Registration. Applied Sciences. 2021; 11(16):7233. https://doi.org/10.3390/app11167233
Chicago/Turabian StyleNicholson, Nicholas Charles, Francesco Giusti, Manola Bettio, Raquel Negrao Carvalho, Nadya Dimitrova, Tadeusz Dyba, Manuela Flego, Luciana Neamtiu, Giorgia Randi, and Carmen Martos. 2021. "An Ontology to Model the International Rules for Multiple Primary Malignant Tumours in Cancer Registration" Applied Sciences 11, no. 16: 7233. https://doi.org/10.3390/app11167233
APA StyleNicholson, N. C., Giusti, F., Bettio, M., Negrao Carvalho, R., Dimitrova, N., Dyba, T., Flego, M., Neamtiu, L., Randi, G., & Martos, C. (2021). An Ontology to Model the International Rules for Multiple Primary Malignant Tumours in Cancer Registration. Applied Sciences, 11(16), 7233. https://doi.org/10.3390/app11167233