Multi-Lens Array Full-Field X-ray Microscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multi Full-Field Microscopy
2.2. Multi-Lens Array Fabrication
2.3. Microscopy Setup
3. Results
3.1. Measurement Results
3.2. Simulation Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hecht, E. Optik, 7th ed.; Walter de Gruyter GmbH: Berlin, Germany, 2018. [Google Scholar]
- Baumbach, S.; Kanngießer, B.; Malzer, W.; Stiel, H.; Wilhein, T. A laboratory 8 keV transmission full-field X-ray microscope with a polycapillary as condenser for bright and dark field imaging. Rev. Sci. Instrum. 2015, 86, 083708. [Google Scholar] [CrossRef] [PubMed]
- Attwood, D. Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Fella, C. High-Resolution X-ray Imaging Based on a Liquid-Metal-Jet-Source with and without X-ray Optics. Ph.D. Thesis, Julius-Maximilians-Universität Würzburg, Wurzburg, Germany, 2016. [Google Scholar]
- Niese, S.; Krüger, P.; Kubec, A.; Braun, S.; Patommel, J.; Schroer, C.G.; Leson, A.; Zschech, E. Full-field X-ray microscopy with crossed partial multilayer Laue lenses. Opt. Express 2014, 22, 20008–20013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seim, C.; Baumann, J.; Legall, H.; Redlich, C.; Mantouvalou, I.; Blobel, G.; Stiel, H.; Kanngießer, B. Laboratory Full-Field Transmission X-ray Microscopy. Proc. SPIE 2012, 8678, 867808. [Google Scholar]
- Lengeler, B.; Schroer, C.G.; Richwin, M.; Tümmler, J. A microscope for hard X-rays based on parabolic compound refractive lenses. Appl. Phys. Lett. 1999, 74, 3924–3926. [Google Scholar] [CrossRef] [Green Version]
- Schroer, C.G.; Günzler, T.F.; Benner, B.; Kuhlmann, M.; Tümmler, J.; Lengeler, B.; Rau, C.; Weitkamp, T.; Snigirev, A.; Snigireva, I. Hard X-ray full field microscopy and magnifying microtomography using compound refractive lenses. Nucl. Instrum. Meth. A 2001, 467–468, 966–969. [Google Scholar] [CrossRef]
- Serebrennikov, D.A.; Dudchik, Y.I.; Barannikov, A.A.; Klimova, N.B.; Snigirev, A.A. X-ray microscope with refractive X-ray optics and microfocus laboratory source. Proc. SPIE 2017, 10387, 103870H. [Google Scholar]
- Fella, C.; Balles, A.; Hanke, R.; Last, A.; Zabler, S. Hybrid setup for micro- and nano-computed tomography in the hard X-ray range. Rev. Sci. Instrum. 2017, 88, 123702. [Google Scholar] [CrossRef]
- Polikarpov, M.; Snigireva, I.; Morse, J.; Yunkin, V.; Kuznetsov, S.; Snigirev, A. Large-acceptance diamond planar refractive lenses manufactured by laser cutting. J. Sync. Rad. 2014, 22, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.T.; Pedersen, A.F.; Mohacsi, I.; Detlefs, C.; Morgan, A.J.; Prasciolu, M.; Yildirim, C.; Simons, H.; Jakobsen, A.; Chapman, H.; et al. Multilayer Laue lenses at high X-ray energies: Performance and applications. Opt. Express 2019, 27, 7120–7138. [Google Scholar] [CrossRef]
- Chawla, A.S.; Boyce, S.; Washington, L.; McAdams, H.P.; Samei, E. Design and Development of a New Multi-Projection X-Ray System for Chest Imaging. IEEE Trans. Nucl. Sci. 2014, 56, 36–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samei, E.; Stebbins, S.A.; Dobbins, J.T.; Lo, J.Y. Multiprojection Correlation Imaging for Improved Detection of Pulmonary Nodules. Am. J. Roentgenol. 2007, 188, 1239–1245. [Google Scholar] [CrossRef]
- Villanueva-Perez, P.; Pedrini, B.; Mokso, R.; Vagovic, P.; Guzenko, V.; Leake, S.; Willmott, P.R.; David, C.; Chapman, H.N.; Stampanoni, M. Coherent Hard X-ray Multiprojection Imaging. Microsc. Microanal. 2018, 24, 50–51. [Google Scholar] [CrossRef] [Green Version]
- Scheimpflug, T. Improved Method and Apparatus for the Systematic Alteration or Distortion of Plane Pictures and Images by Means of Lenses and Mirrors for Photography and for other purposes. GB Patent No. 1196, 16 January 1904. [Google Scholar]
- Henke, B.L.; Gullikson, E.M.; Davis, J.C. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50 − 30,000 eV, Z = 1 − 92. At. Data Nucl. Data Tables 1993, 54, 181–342. [Google Scholar] [CrossRef] [Green Version]
- Roth, T.; Alianelli, L.; Lengeler, D.; Snigirev, A.A.; Seiboth, F. Materials for X-ray refractive lenses minimizing wavefront distortions. Mrs. Bull. 2017, 42, 430–436. [Google Scholar] [CrossRef] [Green Version]
- Petrov, A.K.; Bessonov, V.O.; Abrashitova, K.A.; Kokareva, N.G.; Safronov, K.R.; Barannikov, A.A.; Ershov, P.A.; Klimova, N.; Lyatun, I.I.; Yunkin, V.A.; et al. Polymer X-ray refractive nano-lenses fabricated by additive technology. Opt. Express 2017, 25, 14173–14181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanli, U.T.; Ceylan, H.; Bykova, I.; Weigand, M.; Sitti, M.; Schütz, G.; Keskinbora, K. 3D Nanoprinted Plastic Kinoform X-Ray Optics. Adv. Mater. 2018, 30, 1802503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ristok, S.; Thiele, S.; Toulouse, A.; Herkommer, A.M.; Giessen, H. Stitching-free 3D printing of millimeter-sized highly transparent spherical and aspherical optical components. Opt. Mater. Express 2020, 10, 2370–2378. [Google Scholar] [CrossRef]
- Saile, V.; Wallrabe, U.; Tabata, O.; Korvink, J.G. Advanced Micro & Nanosystems. In LIGA and Its Applications; Wiley-VCH: Hobroken, NJ, USA, 2009; Volume 7. [Google Scholar]
- LIGA-Process. Available online: www.x-ray-optics.de/index.php/en/10-hauptkategorie-en/208-liga-process (accessed on 6 May 2021).
- Nazmov, V.; Reznikova, E.; Mohr, J.; Voigt, A. A method of mechanical stabilization of ultra-high-AR microstructures. J. Mater. Process. Tech. 2016, 231, 319–325. [Google Scholar] [CrossRef]
- Mohacsi, I.; Vartiainen, I.; Rösner, B.; Guizar-Sicairos, M.; Guzenko, V.; McNulty, I.; Winarski, R.; Holt, M.; David, C. Intarlaced zone plate optics for hard X-ray imaging in the 10 nm range. Sci. Rep. 2017, 7, 43624. [Google Scholar] [CrossRef] [Green Version]
- Marschall, F.; Last, A.; Simon, M.; Vogt, H.; Mohr, J. Simulation of aperture-optimised refractive lenses for hard X-ray full field microscopy. Opt. Express 2016, 24, 10880–10889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Excillum, A.B. MetalJet-Technology-ENG-2019-06-14-Screen. Available online: www.excillum.com/download/7882 (accessed on 20 June 2020).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opolka, A.; Müller, D.; Fella, C.; Balles, A.; Mohr, J.; Last, A. Multi-Lens Array Full-Field X-ray Microscopy. Appl. Sci. 2021, 11, 7234. https://doi.org/10.3390/app11167234
Opolka A, Müller D, Fella C, Balles A, Mohr J, Last A. Multi-Lens Array Full-Field X-ray Microscopy. Applied Sciences. 2021; 11(16):7234. https://doi.org/10.3390/app11167234
Chicago/Turabian StyleOpolka, Alexander, Dominik Müller, Christian Fella, Andreas Balles, Jürgen Mohr, and Arndt Last. 2021. "Multi-Lens Array Full-Field X-ray Microscopy" Applied Sciences 11, no. 16: 7234. https://doi.org/10.3390/app11167234
APA StyleOpolka, A., Müller, D., Fella, C., Balles, A., Mohr, J., & Last, A. (2021). Multi-Lens Array Full-Field X-ray Microscopy. Applied Sciences, 11(16), 7234. https://doi.org/10.3390/app11167234