Molecular Tools to Exploit the Biotechnological Potential of Brettanomyces bruxellensis: A Review
Abstract
:1. Introduction
2. Development of Molecular Tools for the Genetic Modification of B. bruxellensis
2.1. Drug Sensitivity
2.2. Construction of Molecular Cassettes for B. bruxellensis Manipulation
2.3. Transformation Protocols
3. CRISPR/Cas9 System in B. bruxellensis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, M.T. Dekkera van der Walt (1964). In The Yeasts, a Taxonomic Study, 5th ed.; Kurtzman, C.P., Fell, J.W., Boekhout, T., Eds.; Elsevier: London, UK, 2011; Volume 1, pp. 373–378. [Google Scholar]
- Yamada, Y.; Matsuda, M.; Maeda, K.; Mikata, K. The Phylogenetic Relationships of Species of the Genus Dekkera VAN DER WALT Based on the Partial Sequences of 18S and 26S Ribosomal RNAs (Saccharomycetaceae). Biosci. Biotech. Biochem. 1994, 58, 1803–1808. [Google Scholar] [CrossRef] [Green Version]
- Agnolucci, M.; Tirelli, A.; Cocolin, L.; Toffanin, A. Brettanomyces bruxellensis yeasts: Impact on wine and winemaking. World J. Microbiol. Biotechnol. 2017, 33, 180. [Google Scholar] [CrossRef] [PubMed]
- Kurtzman, C.P.; Fell, J.W.; Boekhout, T.; Robert, V. Methods for Isolation, Phenotypic Characterization and Maintenance of Yeasts. In The Yeasts, a Taxonomic Study, 5th ed.; Kurtzman, C.P., Fell, J.W., Boekhout, T., Eds.; Elsevier: London, UK, 2011; Volume 1, pp. 87–110. [Google Scholar]
- Péter, G.; Dlauchy, D.; Tóbiás, A.; Fülöp, L.; Podgoršek, M.; Čadež, N. Brettanomyces acidodurans sp. nov., a new acetic acid producing yeast species from olive oil. Antonie van Leeuwenhoek 2017, 110, 657–664. [Google Scholar] [CrossRef]
- Turland, N.J.; Wiersema, J.H.; Barrie, F.R.; Greuter, W.; Hawksworth, D.L.; Herendeen, P.S.; Knapp, S.; Kusber, W.H.; Li, D.Z.; Marhold, K.; et al. International Code of Nomenclature for Algae, Fungi, and Plants (Shenzhen Code) Adopted by the Nineteenth International Botanical Congress, Shenzhen, China, 23–29 July 2017; Regnum Vegetabile; Koeltz Botanical Books: Glashütten, Germany, 2018; Volume 159. [Google Scholar]
- Daniel, H.M.; Lachance, M.A.; Kurtzman, C.P. On the reclassification of species assigned to Candida and other anamorphic ascomycetous yeast genera based on phylogenetic circumscription. Antonie van Leeuwenhoek 2014, 106, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Curtin, C.D.; Pretorius, I.S. Genomic insights into the evolution of industrial yeast species Brettanomyces bruxellensis. FEMS Yeast Res. 2014, 14, 997–1005. [Google Scholar]
- Colomer, M.S.; Funch, B.; Forster, J. The raise of Brettanomyces yeast species for beer production. Curr. Opin. Biotechnol. 2019, 56, 30–33. [Google Scholar] [CrossRef]
- Verachtert, H. Lambic and gueuze brewing: Mixed cultures in action. In Proceeding of the COMETT Course on Microbial Contaminants, Helsinki, Finland, 9–10 June 1992. [Google Scholar]
- Gamero, A.; Ferreira, V.; Pretorius, I.S.; Querol, A. Wine, Beer and Cider: Unravelling the Aroma Profile. In Molecular Mechanisms in Yeast Carbon Metabolism; Piškur, J., Compagno, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 261–297. [Google Scholar]
- Spitaels, F.; Wieme, A.D.; Janssens, M.; Aerts, M.; Daniel, H.M.; Van Landschoot, A.; De Vuyst, L.; Vandamme, P. The Microbial Diversity of Traditional Spontaneously Fermented Lambic Beer. PLoS ONE 2014, 9, e95384. [Google Scholar] [CrossRef] [PubMed]
- Cortés–Diéguez, S.; Rodriguez–Solana, R.; Domínguez, J.M.; Díaz, E. Impact odorants and sensory profile of young red wines from four Galician (NW of Spain) traditional cultivars. J. Inst. Brew. 2015, 121, 628–635. [Google Scholar] [CrossRef] [Green Version]
- Crauwels, S.; Steensels, J.; Aerts, G.; Willems, K.; Verstrepen, K.; Lievens, B. Brettanomyces bruxellensis, essential contributor in spontaneous beer fermentations providing novel opportunities for the brewing industry. Brew. Sci. 2015, 68, 110–121. [Google Scholar]
- Lentz, M.; Harris, C. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast. Foods 2015, 4, 581–593. [Google Scholar] [CrossRef] [Green Version]
- Castro Parente, D.; Vidal, E.E.; Leite, F.C.B.; de Barros Pita, W.; de Morais, M.A. Production of sensory compounds by means of the yeast Dekkera bruxellensis in different nitrogen sources with the prospect of producing cachaça. Yeast 2015, 32, 77–87. [Google Scholar] [PubMed] [Green Version]
- Vigentini, I.; Romano, A.; Compagno, C.; Merico, A.; Molinari, F.; Tirelli, A.; Foschino, R.; Volonterio, G. Physiological and oenological traits of different Dekkera/Brettanomyces bruxellensis strains under wine–model conditions. FEMS Yeast Res. 2008, 8, 1087–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatonnet, P.; Dubourdieu, D.; Boidron, J.N. The Influence of Brettanomyces/Dekkera sp. Yeasts and Lactic Acid Bacteria on the Ethylphenol Content of Red Wines. Am. J. Enol. Vitic. 1995, 46, 463–468. [Google Scholar]
- Schifferdecker, A.J.; Dashko, S.; Ishchuk, O.P.; Piškur, J. The wine and beer yeast Dekkera bruxellensis. Yeast 2014, 31, 323–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuehlke, J.M.; Petrova, B.; Edwards, C.G. Advances in the Control of Wine Spoilage by Zygosaccharomyces and Dekkera/Brettanomyces. Annu. Rev. Food Sci. Technol. 2013, 4, 57–78. [Google Scholar] [CrossRef]
- Hellborg, L.; Piskur, J. Complex nature of the genome in a wine spoilage yeast, Dekkera bruxellensis. Eukaryot. Cell 2009, 8, 1739–1749. [Google Scholar] [CrossRef] [Green Version]
- Vigentini, I.; De Lorenzis, G.; Picozzi, C.; Imazio, S.; Merico, A.; Galafassi, S.; Piškur, J.; Foschino, R. Intraspecific variations of Dekkera/Brettanomyces bruxellensis genome studied by capillary electrophoresis separation of the intron splice site profiles. Int. J. Food Microbiol. 2012, 157, 6–15. [Google Scholar] [CrossRef]
- Avramova, M.; Cibrario, A.; Peltier, E.; Coton, M.; Coton, E.; Schacherer, J.; Spano, G.; Capozzi, V.; Blaiotta, G.; Salin, F.; et al. Brettanomyces bruxellensis population survey reveals a diploid–triploid complex structured according to substrate of isolation and geographical distribution. Sci. Rep. 2018, 8, 4136. [Google Scholar] [CrossRef]
- Selmecki, A.M.; Maruvka, Y.E.; Richmond, P.A.; Guillet, M.; Shoresh, N.; Sorenson, A.L.; De, S.; Kishony, R.; Michor, F.; Dowell, R.; et al. Polyploidy can drive rapid adaptation in yeast. Nature 2015, 519, 349–352. [Google Scholar] [CrossRef]
- Smith, B.D.; Divol, B. Brettanomyces bruxellensis, a survivalist prepared for the wine apocalypse and other beverages. Food Microbiol. 2016, 59, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.; Wang, M.; Zhan, R.; Yu, Y.; He, Y.; Lu, H. Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways. Biotechnol. Biofuels 2019, 12, 63. [Google Scholar] [CrossRef]
- Steensels, J.; Daenen, L.; Malcorps, P.; Derdelinckx, G.; Verachtert, H.; Verstrepen, K.J. Brettanomyces yeasts—From spoilage organisms to valuable contributors to industrial fermentations. Int. J. Food Microbiol. 2015, 206, 24–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blomqvist, J.; Passoth, V. Dekkera bruxellensis—Spoilage yeast with biotechnological potential, and a model for yeast evolution, physiology and competitiveness. FEMS Yeast Res. 2015, 15, fov021. [Google Scholar] [CrossRef] [Green Version]
- de Barros Pita, W.; Teles, G.H.; Peña–Moreno, I.C.; da Silva, J.M.; Ribeiro, K.C.; de Morais, M.A., Jr. The biotechnological potential of the yeast Dekkera bruxellensis. World J. Microbiol. Biotechnol. 2019, 35, 103. [Google Scholar] [CrossRef] [PubMed]
- Teles, G.H.; da Silva, J.M.; Mendonça, A.A.; de Morais Junior, M.A.; de Barros Pita, W. First aspects on acetate metabolism in the yeast Dekkera bruxellensis: A few keys for improving ethanol fermentation. Yeast 2018, 35, 577–584. [Google Scholar] [CrossRef] [Green Version]
- Park, S.W.; Hong, Y.K.; Kim, S.W.; Hong, S.I. Ethanol production by an immobilized thermotolerant mutant of Brettanomyces custersii H1–39 from wood hydrolyzate media. Korean J. Microbiol. Biotechnol. 2000, 28, 172–179. [Google Scholar]
- Galafassi, S.; Merico, A.; Pizza, F.; Hellborg, L.; Molinari, F.; Piškur, J.; Compagno, C. Dekkera/Brettanomyces yeasts for ethanol production from renewable sources under oxygen–limited and low–pH conditions. J. Ind. Microbiol. Biotechnol. 2011, 38, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Basílio, A.C.M.; de Araújo, P.R.L.; de Morais, J.O.F.; Silva–filho, E.A.; Morais, M.A.; Simoes, D.A. Detection and Identification of Wild Yeast Contaminants of the Industrial Fuel Ethanol Fermentation Process. Curr. Microbiol. 2008, 56, 322–326. [Google Scholar] [CrossRef]
- Blomqvist, J.; Eberhard, T.; Schnürer, J.; Passoth, V. Fermentation characteristics of Dekkera bruxellensis strains. Appl. Microbiol. Biotechnol. 2010, 87, 1487–1497. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.F.; Bassi, A.P.; Avansini, S.H.; Neto, A.G.; Brasileiro, B.T.; Ceccato–Antonini, S.R.; de Morais, M.A., Jr. The physiological characteristics of the yeast Dekkera bruxellensis in fully fermentative conditions with cell recycling and in mixed cultures with Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 2012, 101, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Piškur, J.; Ling, Z.; Marcet–Houben, M.; Ishchuk, O.P.; Aerts, A.; LaButti, K.; Copeland, A.; Lindquist, E.; Barry, K.; Compagno, C.; et al. The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food–related properties. Int. J. Food Microbiol. 2012, 157, 202–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtin, C.D.; Borneman, A.R.; Chambers, P.J.; Pretorius, I.S. De–Novo Assembly and Analysis of the Heterozygous Triploid Genome of the Wine Spoilage Yeast Dekkera bruxellensis AWRI1499. PLoS ONE 2012, 7, e33840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolfit, M.; Rozpędowska, E.; Piškur, J.; Wolfe, K.H. Genome Survey Sequencing of the Wine Spoilage Yeast Dekkera (Brettanomyces) bruxellensis. Eukaryot. Cell 2007, 6, 721–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peynaud, E.; Domercq, S. Sur les Brettanomyces isolés de raisins et de vins. Arch. Microbiol. 1956, 24, 266–280. [Google Scholar]
- Fournier, T.; Gounot, J.S.; Freel, K.; Cruaud, C.; Lemainque, A.; Aury, J.M.; Wincker, P.; Schacherer, J.; Friedrich, A. High–Quality de Novo Genome Assembly of the Dekkera bruxellensis Yeast Using Nanopore MinION Sequencing. G3 2017, 7, 3243–3250. [Google Scholar] [CrossRef] [Green Version]
- Godoy, L.; Silva–Moreno, E.; Mardones, W.; Guzman, D.; Cubillos, F.A.; Ganga, A. Genomics Perspectives on Metabolism, Survival Strategies, and Biotechnological Applications of Brettanomyces bruxellensis LAMAP2480. J. Mol. Microbiol. Biotechnol. 2017, 27, 147–158. [Google Scholar] [CrossRef]
- Roach, M.J.; Borneman, A.R. New genome assemblies reveal patterns of domestication and adaptation across Brettanomyces (Dekkera) species. BMC Genom. 2020, 21, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiukova, I.A.; Pettersson, M.E.; Hoeppner, M.P.; Olsen, R.A.; Käller, M.; Nielsen, J.; Dainat, J.; Lantz, H.; Söderberg, J.; Passoth, V. Chromosomal genome assembly of the ethanol production strain CBS 11270 indicates a highly dynamic genome structure in the yeast species Brettanomyces bruxellensis. PLoS ONE 2019, 14, e0215077. [Google Scholar] [CrossRef]
- Schiønning, H. On Torula in English Beer Manufacture*. J. Inst. Brew. 1909, 15, 2–35. [Google Scholar] [CrossRef]
- Colomer, M.S.; Chailyan, A.; Fennessy, R.T.; Olsson, K.F.; Johnsen, L.; Solodovnikova, N.; Forster, J. Assessing Population Diversity of Brettanomyces Yeast Species and Identification of Strains for Brewing Applications. Front. Microbiol. 2020, 11, 637. [Google Scholar] [CrossRef]
- Di Canito, A.; Foschino, R.C.; Vigentini, I. Brettanomyces. In UNIMI Dataverse, version 1; Universita degli Studi di Milano: Milan, Italy, 2020. [Google Scholar] [CrossRef]
- Vigentini, I.; Gebbia, M.; Belotti, A.; Foschino, R.; Roth, F.P. CRISPR/Cas9 System as a Valuable Genome Editing Tool for Wine Yeasts with Application to Decrease Urea Production. Front. Microbiol. 2017, 8, 2194. [Google Scholar] [CrossRef] [PubMed]
- Avramova, M.; Grbin, P.; Borneman, A.; Albertin, W.; Masneuf–Pomarède, I.; Varela, C. Competition experiments between Brettanomyces bruxellensis strains reveal specific adaptation to sulfur dioxide and complex interactions at intraspecies level. FEMS Yeast Res. 2019, 19, foz010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miklenić, M.; Štafa, A.; Bajić, A.; Žunar, B.; Lisnić, B.; Svetec, I.K. Genetic transformation of the yeast Dekkera/Brettanomyces bruxellensis with non–homologous DNA. J. Microbiol. Biotechnol. 2013, 23, 674–680. [Google Scholar] [CrossRef] [Green Version]
- Schiestl, R.H.; Petes, T.D. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1991, 88, 7585–7589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishchuk, O.P.; Vojvoda Zeljko, T.; Schifferdecker, A.J.; Mebrahtu Wisén, S.; Hagström, Å.K.; Rozpędowska, E.; Andersen, M.R.; Hellborg, L.; Ling, Z.; Sibirny, A.A.; et al. Novel Centromeric Loci of the Wine and Beer Yeast Dekkera bruxellensis CEN1 and CEN2. PLoS ONE 2016, 11, e0161741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.T.; Choi, Y.J.; Lee, B.H. Transformation Systems of non–Saccharomyces Yeasts. Crit. Rev. Biotechnol. 2001, 21, 177–218. [Google Scholar] [CrossRef]
- Avramova, M. Génétique de Populations et Diversité de l’Espèce Brettanomyces bruxellensis. Etude de la Tolérance aux Sulfites. Ph.D. Thesis, Université de Bordeaux, Bordeaux, France, 19 December 2017. [Google Scholar]
- Varela, C.; Lleixà, J.; Curtin, C.; Borneman, A. Development of a genetic transformation toolkit for Brettanomyces bruxellensis. FEMS Yeast Res. 2018, 18, foy070. [Google Scholar] [CrossRef] [PubMed]
- Raschmanová, H.; Weninger, A.; Glieder, A.; Kovar, K.; Vogl, T. Implementing CRISPR–Cas technologies in conventional and non–conventional yeasts: Current state and future prospects. Biotechnol. Adv. 2018, 36, 641–665. [Google Scholar] [CrossRef]
- Miklenić, M.; Žunar, B.; Štafa, A.; Svetec, I.K. Improved electroporation procedure for genetic transformation of Dekkera/Brettanomyces bruxellensis. FEMS Yeast Res. 2015, 15, fov096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, P.; Zhao, X.; Pan, S. Intraspecific protoplast fusion of Brettanomyces anomalus for improved production of an extracellular β–glucosidase. Biotechnol. Biotechnol. Equip. 2014, 28, 878–881. [Google Scholar] [CrossRef]
- Serpaggi, V.; Remize, F.; Recorbet, G.; Gaudot–Dumas, E.; Sequeira–Le Grand, A.; Alexandre, H. Characterization of the “viable but nonculturable” (VBNC) state in the wine spoilage yeast Brettanomyces. Food Microbiol. 2012, 30, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, A.A.; Walter, J.M.; Schubert, M.G.; Kung, S.H.; Hawkins, K.; Platt, D.M.; Hernday, A.D.; Mahatdejkul–Meadows, T.; Szeto, W.; Chandran, S.S.; et al. Efficient Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR–Cas. Cell Syst. 2015, 1, 88–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakočiūnas, T.; Bonde, I.; Herrgård, M.; Harrison, S.J.; Kristensen, M.; Pedersen, L.E.; Jensen, M.K.; Keasling, J.D. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab. Eng. 2015, 28, 213–222. [Google Scholar] [CrossRef]
- Mans, R.; van Rossum, H.M.; Wijsman, M.; Backx, A.; Kuijpers, N.G.A.; van den Broek, M.; Daran–Lapujade, P.; Pronk, J.T.; van Maris, A.J.A.; Daran, J.M.G. CRISPR/Cas9: A molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res. 2015, 15, fov004. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wei, D.; Zhu, X.; Pan, J.; Zhang, P.; Huo, L.; Zhu, X. A ‘suicide’ CRISPR–Cas9 system to promote gene deletion and restoration by electroporation in Cryptococcus neoformans. Sci. Rep. 2016, 6, 31145. [Google Scholar] [CrossRef] [Green Version]
- Lian, J.; Bao, Z.; Hu, S.; Zhao, H. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains. Biotechnol. Bioeng. 2018, 115, 1630–1635. [Google Scholar] [CrossRef]
- Cai, P.; Gao, J.; Zhou, Y. CRISPR–mediated genome editing in non–conventional yeasts for biotechnological applications. Microb. Cell Fact. 2019, 18, 63. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, R.S.; Chavez, A.; Collins, J.J. CRISPR–based genomic tools for the manipulation of genetically intractable microorganisms. Nat. Rev. Microbiol. 2018, 16, 333–339. [Google Scholar] [CrossRef]
- Varela, C.; Bartel, C.; Onetto, C.; Borneman, A. Targeted gene deletion in Brettanomyces bruxellensis with an expression–free CRISPR–Cas9 system. Appl. Microbiol. Biotechnol. 2020, 104, 7105–7115. [Google Scholar] [CrossRef]
- Weninger, A.; Fischer, J.E.; Raschmanová, H.; Kniely, C.; Vogl, T.; Glieder, A. Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers. J. Cell. Biochem. 2018, 119, 3183–3198. [Google Scholar] [CrossRef] [Green Version]
- Varela, C.; Bartel, C.; Roach, M.; Borneman, A.; Curtin, C. Brettanomyces bruxellensis SSU1 Haplotypes Confer Different Levels of Sulfite Tolerance When Expressed in a Saccharomyces cerevisiae SSU1 Null Mutant. Appl. Environ. Microbiol. 2019, 85, e02429-18. [Google Scholar] [CrossRef] [Green Version]
- Valdetara, F.; Škalič, M.; Fracassetti, D.; Louw, M.; Compagno, C.; du Toit, M.; Foschino, R.; Petrovič, U.; Divol, B.; Vigentini, I. Transcriptomics unravels the adaptive molecular mechanisms of Brettanomyces bruxellensis under SO2 stress in wine condition. Food Microbiol. 2020, 90, 103483. [Google Scholar] [CrossRef] [PubMed]
- Vigentini, I.; Lucy Joseph, C.; Picozzi, C.; Foschino, R.; Bisson, L.F. Assessment of the Brettanomyces bruxellensis metabolome during sulphur dioxide exposure. FEMS Yeast Res. 2013, 13, 597–608. [Google Scholar] [CrossRef] [Green Version]
- Grahl, N.; Demers, E.G.; Crocker, A.W.; Hogan, D.A. Use of RNA–protein complexes for genome editing in non–albicans Candida species. mSphere 2017, 2, e00218–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stovicek, V.; Holkenbrink, C.; Borodina, I. CRISPR/Cas system for yeast genome engineering: Advances and applications. FEMS Yeast Res. 2017, 17, fox030. [Google Scholar] [CrossRef] [PubMed]
Features | References | |
---|---|---|
Growth rate (μ, h−1) | 0.037–0.114 | [29] |
Ethanol yield (g/g glucose) | 0.44–0.46 | [29] |
Glycerol yield (g/g glucose) | 0.0–0.026 | [28] |
Crabtree positive | yes | [9,20,28] |
Custers effect | yes | [9,22,28,29] |
Presence of respiratory complex 1 | yes | [9,20,28] |
Nitrate assimilation | strain specific | [9,22,28] |
Ethanol tolerance | 14% | [28] |
Whole–genome sequencing | yes | [8,36,37] |
AOX1 | yes | [9,20,28] |
Phenol metabolism | strain specific | [9,28] |
Enzymatic activities (VPR; CD; β–glucosidase) | strain specific | [19,28] |
SO2 tolerance | strain specific | [37] |
Strain | BioSample | Bioproject | Assembly | Size (Mb) | GC% | CDS | Ecological Origin | Geographical Origin | References | |
---|---|---|---|---|---|---|---|---|---|---|
CBS 2499 | SAMN00750237 | PRJNA76499 | GCA_000340765.1 | 13.36 | 40.3 | 5600 | wine | France | [36] | |
AWRI1499 | SAMN02261473 | PRJNA78661 | GCA_000259595.1 | 12.68 | 39.9 | 4861 | wine | Australia | [37] | |
CBS 2796 | SAMN05544770 | PRJNA335438 | GCA_001719535.1 | 11.77 | 39.8 | – | sparkling wine | France | [38] | |
UMY321 | SAMEA5744194 | PRJEB33245 | GCA_902155815.1 | 12.97 | 40.0 | 4666 | wine | Italy | [22,39] | |
LAMAP2480 | SAMN09981576 | PRJNA231184 | GCA_000688595.1 | 26.99 | 39.9 | – | wine | Chile | [41] | |
UCD 2041 | SAMN12257691 | PRJNA554210 | GCA_011074885.1 | 13.15 | 39.9 | – | fruit wine | United States | [42] | |
CBS 11270 | SAMEA104365571 | PRJEB11548 | GCA_900496985.1 | 15.39 | 41.6 | 4879 | industrial ethanol | Sweden | [43] | |
CRL–50 | SAMN13421994 | PRJNA592329 | GCA_012295375.1 | 17.82 | 39.8 | – | 2n | beer | Denmark | [45] |
Drug Concentration (µg mL−1) | Geneticin (G418) | Nourseothricin (NTC) | Hygromicin (Hyg) | Canavanine (Can) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AWRI1499 | CBS2499 | AWRI1499 | CBS2499 | AWRI1499 | CBS2499 | AWRI1499 | CBS2499 | |||||||||
(NH4)2SO4 | GLU | (NH4)2SO4 | GLU | (NH4)2SO4 | GLU | (NH4)2SO4 | GLU | (NH4)2SO4 | GLU | (NH4)2SO4 | GLU | (NH4)2SO4 | GLU | (NH4)2SO4 | GLU | |
0 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
50 | ± | – | + | – | – | – | – | – | – | – | ± | – | – | – | – | – |
100 | ± | – | + | – | – | – | – | – | – | – | ± | – | – | – | – | – |
200 | ± | – | + | – | – | – | – | – | – | – | ± | – | – | – | – | – |
300 | – | – | ± | – | – | – | – | – | – | – | – | – | – | – | – | – |
400 | – | – | ± | – | – | – | – | – | – | – | – | – | – | – | – | – |
500 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
600 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
Vectors | Drug Resistance | Promotor | Terminator | Insertion | References |
---|---|---|---|---|---|
pMK–T–TDH1pr–kanMX | Kanamycin Geneticin | BbTDH1 | AgTEF2 | BbTDH1, AgTEF2 KanR | [53,54] |
pMK–T–TDH1pr–natMX | Kanamycin Nourseothricin | BbTDH1 | AgTEF2 | BbTDH1, AgTEF2 NatR | [53,54] |
pMK–T–TDH1pr–hygMX | Kanamycin Hygromicin | BbTDH1 | AgTEF2 | BbTDH1, AgTEF2 HygR | [53,54] |
pMA–TDH1pr–natMX | Ampicillin Nourseothricin | BbTDH1 | AgTEF2 | BbTDH1, AgTEF2 NatR | [53,54] |
pMA–TDH1pr–natMX::GFP | Ampicillin Nourseothricin | ScFBA1 | ScPGK1 | BbTDH1, AgTEF2 NatR GFP | [53,54] |
pMA–TDH1pr–natMX::BFP | Ampicillin Nourseothricin | ScFBA1 | ScPGK1 | BbTDH1, AgTEF2 NatR BFP | [53,54] |
Procedure | Medium | OD600nm | Growth Temperature (°C) | Solution—Chemical Compounds | Transformation Efficiency | References |
---|---|---|---|---|---|---|
LiAc/PEG transformation | GYP; SCM | 0.60–0.75 | 28 °C | M LiAc– 50% PEG | 16 transformants μg−1 DNA | [49] |
Electroporation transformation | GYP | 0.25–0.35 | 28 °C | M LiAc– 0.5—1 M sorbitol | 2.8 × 103 transformants μg−1 DNA | [49,56] |
Spheroplast transformation | GYP; SCM | / | 28 °C | Zymolyase–0.5 M–1 M sorbitol | plating efficiency * 75%; 7.4% | [49] |
Spheroplast intraspecific fusion | YPD; MM | 1.00 | 30 °C | Snailase–PE buffer– PEG 4000 | ** | [57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Canito, A.; Foschino, R.; Mazzieri, M.; Vigentini, I. Molecular Tools to Exploit the Biotechnological Potential of Brettanomyces bruxellensis: A Review. Appl. Sci. 2021, 11, 7302. https://doi.org/10.3390/app11167302
Di Canito A, Foschino R, Mazzieri M, Vigentini I. Molecular Tools to Exploit the Biotechnological Potential of Brettanomyces bruxellensis: A Review. Applied Sciences. 2021; 11(16):7302. https://doi.org/10.3390/app11167302
Chicago/Turabian StyleDi Canito, Alessandra, Roberto Foschino, Martina Mazzieri, and Ileana Vigentini. 2021. "Molecular Tools to Exploit the Biotechnological Potential of Brettanomyces bruxellensis: A Review" Applied Sciences 11, no. 16: 7302. https://doi.org/10.3390/app11167302
APA StyleDi Canito, A., Foschino, R., Mazzieri, M., & Vigentini, I. (2021). Molecular Tools to Exploit the Biotechnological Potential of Brettanomyces bruxellensis: A Review. Applied Sciences, 11(16), 7302. https://doi.org/10.3390/app11167302