The Breakage of Shape-Anisotropic Particles under Normal Contact with Different Particle Shape Parameters
Abstract
:1. Introduction
2. Material and Experimental Method
2.1. Experimental Material
2.2. Experiment Scheme
3. Results
3.1. Breakage Process and Mode
3.2. Force–Displacement Curves
3.3. Breakage Mode Discrimination
4. Discussion
5. Conclusions
- After a local crushing at the contact interface, the particle breakages with increasing normal forces turn out to be three modes: peeling, peeling–splitting and splitting. The particle breakage mode transfers from peeling to splitting with the increases in contact diameter d and cone angle θ, but a decrease in sphere diameter D;
- Each breakage mode has a distinct force–displacement curve. The first peak of normal force Fcr has a positive linear correlation with contact diameter d and cone angle θ, but no direct correlation with sphere diameter D. The relationship between the critical normal force Fcr and sphere diameter D heavily depends on the breakage mode;
- The critical contact diameter dcr described by cone angle θ and sphere diameter D is proposed to discriminate particle breakage mode. If contact diameter d is smaller than the lower critical contact diameter dcrl, peeling will occur, and if contact diameter d is larger than the upper critical contact diameter dcru, the particle would be split; otherwise, the particle would crush as peeling–splitting.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lade, P.V.; Yamamuro, J.A.; Bopp, P.A. Significance of particle crushing in granular materials. J. Geotech. Eng. 1996, 122, 309–316. [Google Scholar] [CrossRef]
- Lawton, E.C.; Fragaszy, R.J.; Hetherington, M.D. Review of wetting-induced collapse in compacted soil. J. Geotech. Eng. 1992, 118, 1376–1394. [Google Scholar] [CrossRef]
- Cetin, H.; Laman, M.; Ertunç, A. Settlement and slaking problems in the world’s fourth largest rock-fill dam, the Ataturk Dam in Turkey. Eng. Geol. 2000, 56, 225–242. [Google Scholar] [CrossRef]
- Alonso, E.E.; Olivella, S.; Pinyol, N.M. A review of Beliche dam. Géotechnique 2005, 55, 267–285. [Google Scholar] [CrossRef]
- Jia, Y.; Xu, B.; Chi, S.; Xiang, B.; Xiao, D.; Zhou, Y. Joint back analysis of the creep deformation and wetting deformation parameters of soil used in the Guanyinyan composite dam. Comput. Geotech. 2018, 96, 167–177. [Google Scholar] [CrossRef]
- Karatza, Z.; Andò, E.; Papanicolopulos, S.-A.; Viggiani, G.; Ooi, J.Y. Effect of particle morphology and contacts on particle breakage in a granular assembly studied using X-ray tomography. Granul. Matter 2019, 21, 44. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Xu, B.; Chi, S.; Xiang, B.; Xiao, D.; Zhou, Y. Particle breakage of rockfill material during triaxial tests under complex stress paths. Int. J. Géoméch. 2019, 19, 04019124. [Google Scholar] [CrossRef]
- Hong, C.; Huang, M.; Zhang, D.; Shou, P.; Zhu, Z. Characteristics of direct shear and particle breakage of pebble gravel materials. Geofluids 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, M. Dilatancy and critical state of calcareous sand incorporating particle breakage. Int. J. Géoméch. 2020, 20, 04020030. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, S.; Wang, Z. Effect of particle breakage and shape on the mechanical behaviors of granular materials. Adv. Civ. Eng. 2019, 2019, 1–15. [Google Scholar] [CrossRef]
- Yang, G.; Yan, X.; Nimbalkar, S.; Xu, J. Effect of particle shape and confining pressure on breakage and deformation of artificial rockfill. Int. J. Geosynth. Ground Eng. 2019, 5, 15. [Google Scholar] [CrossRef]
- Ballantyne, G.R.; Bonfils, B.; Powell, M.S. Evolution of impact breakage characterisation: Redefining t-family relationship. Int. J. Miner. Process. 2017, 168, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Afshar, T.; Disfani, M.M.; Arulrajah, A.; Narsilio, G.A.; Emam, S. Impact of particle shape on breakage of recycled construction and demolition aggregates. Powder Technol. 2017, 308, 417–422. [Google Scholar] [CrossRef]
- Fu, R.; Hu, X.; Zhou, B. Discrete element modeling of crushable sands considering realistic particle shape effect. Comput. Geotech. 2017, 91, 179–191. [Google Scholar] [CrossRef]
- Jiang, Y.; Herrmann, H.J.; Alonso-Marroquin, F. A boundary-spheropolygon element method for modelling sub-particle stress and particle breakage. Comput. Geotech. 2019, 113, 103087. [Google Scholar] [CrossRef]
- Kuo, C.-Y.; Freeman, R.B. Imaging indices for quantification of shape, angularity, and surface texture of aggregates. Transp. Res. Rec. J. Transp. Res. Board 2000, 1721, 57–65. [Google Scholar] [CrossRef]
- Al-Rousan, T.; Masad, E.; Tutumluer, E.; Pan, T. Evaluation of image analysis techniques for quantifying aggregate shape characteristics. Constr. Build. Mater. 2007, 21, 978–990. [Google Scholar] [CrossRef]
- Hong, L.; Gu, X.-L.; Lin, F.; Gao, P.; Sun, L.-Z. Effects of coarse aggregate form, angularity, and surface texture on concrete mechanical performance. J. Mater. Civ. Eng. 2019, 31, 04019226. [Google Scholar] [CrossRef]
- Zhu, H.; Fang, H.; Yang, J.; Su, X.; Cai, Y.; Lv, N. The independent characterization and experimental study of coarse aggregate angularity. Part. Sci. Technol. 2019, 39, 116–122. [Google Scholar] [CrossRef]
- Wu, X.H.; Cai, Y.Q.; Xu, S.F.; Xu, S.F.; Zhuang, Y.C.; Wang, Q.X.; Wang, Z. Effects of size and shape on the crushing strength of coral sand particles under diametral compression test. Bull. Eng. Geol. Environ. 2020, 80, 1829–1839. [Google Scholar]
- Shen, J.; Xu, D.; Liu, Z.; Wei, H. Effect of particle characteristics stress on the mechanical properties of cement mortar with coral sand. Constr. Build. Mater. 2020, 260, 119836. [Google Scholar] [CrossRef]
- Gupta, A.K. Effects of particle size and confining pressure on breakage factor of rockfill materials using medium triaxial test. J. Rock Mech. Geotech. Eng. 2016, 8, 378–388. [Google Scholar] [CrossRef] [Green Version]
- Rahmani, H.; Panah, A.K. Influence of particle size on particle breakage and shear strength of weak rockfill. Bull. Int. Assoc. Eng. Geol. 2020, 80, 473–489. [Google Scholar] [CrossRef]
- Sun, Y.; Nimbalkar, S.; Chen, C. Particle breakage of granular materials during sample preparation. J. Rock Mech. Geotech. Eng. 2019, 11, 417–422. [Google Scholar] [CrossRef]
- Choi, H.; Lake, C.B.; Hills, C.D. Particle size effects on breakage of ACT aggregates under physical and environmental loadings. J. Hazard. Toxic Radioact. Waste 2020, 24, 04019029. [Google Scholar] [CrossRef]
- Ovalle, C.; Frossard, E.; Dano, C.; Hu, W.; Maiolino, S.; Hicher, P.Y. The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data. Acta Mech. 2014, 225, 2199–2216. [Google Scholar] [CrossRef] [Green Version]
- Cavarretta, I.; O’Sullivan, C.; Coop, M.R. The relevance of roundness to the crushing strength of granular materials. Géotechnique 2017, 67, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Zhang, Y.W.; Zhou, Y.H.; Zhang, J. Experimental study on particle breakage of coarse-grained soil considering normal contact force. Chin. J. Geotech. Eng. 2018, 40, 1163–1170. [Google Scholar]
- Wang, W.; Coop, M.R. An investigation of breakage behavior of single sand particles using a high-speed microscope camera. Géotechnique 2016, 66, 984–998. [Google Scholar] [CrossRef] [Green Version]
- Tapias, M.; Alonso, E.E.; Gili, J. A particle model for rockfill behavior. Géotechnique 2015, 65, 975–994. [Google Scholar] [CrossRef]
- Yu, S.; Jia, M.; Zhou, J.; Zhao, C.; Li, L. Micro-mechanism of spherical gypsum particle breakage under ball–plane contact condition. Appl. Sci. 2019, 9, 4795. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.; Li, L.; Zhang, Y.; Yu, S.; Zhou, J. Micromechanism of the breakage of two spherical gypsum particles under normal–tangential contact conditions. Appl. Sci. 2021, 11, 4039. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, J.; Coop, M.R.; Viggiani, G.; Jiang, M. An investigation of single sand particle fracture using X-ray micro-tomography. Géotechnique 2015, 65, 625–641. [Google Scholar] [CrossRef] [Green Version]
Material | Elastic Modulus E (MPa) | Poisson Ratio ν | Tensile Strength (MPa) | Compressive Strength (MPa) |
---|---|---|---|---|
Slate | 65.1 | 0.25 | 6.8 | 117.3 |
Limestone | 53.8 | 0.28 | 5.2 | 85.9 |
Sandstone | 22.9 | 0.29 | 4.1 | 57.1 |
Gypsum | 16.1 | 0.35 | 2.9 | 47.2 |
G–D–θ-d | Material G | Sphere Diameter D (mm) | Cone Angle θ (°) | Contact Diameter d (mm) |
---|---|---|---|---|
G-30-90-3 | Gypsum | 30 | 90 | 3 |
G-30-90-5 | 5 | |||
G-30-90-7 | 7 | |||
G-30-90-8 | 8 | |||
G-30-90-10 | 10 | |||
G-50-60-5 | 50 | 60 | 5 | |
G-50-60-7 | 7 | |||
G-50-60-8 | 8 | |||
G-50-60-10 | 10 | |||
G50-60-12 | 12 | |||
G-50-90-5 | 90 | 5 | ||
G-50-90-7 | 7 | |||
G-50-90-8 | 8 | |||
G-50-90-10 | 10 | |||
G-50-120-3 | 120 | 3 | ||
G-50-120-5 | 5 | |||
G-50-120-7 | 7 | |||
G-50-120-8 | 8 | |||
G-50-120-10 | 10 | |||
G-70-90-8 | 70 | 90 | 8 | |
G-70-90-10 | 10 | |||
G-70-90-12 | 12 | |||
G-70-90-14 | 14 | |||
G-70-90-16 | 16 |
Sphere Diameter D (mm) | Cone Angle θ (°) | Contact Diameter d (mm) | |||||||
---|---|---|---|---|---|---|---|---|---|
3 | 5 | 7 | 8 | 10 | 12 | 14 | 16 | ||
30 | 90 | Peeling | Peeling –splitting | Splitting | Splitting | Splitting | |||
50 | 120 | Peeling –splitting | Peeling –splitting | Splitting | Splitting | Splitting | |||
90 | Peeling | Peeling –splitting | Peeling –splitting | splitting | |||||
60 | Peeling | Peeling | Peeling –splitting | Peeling –splitting | Splitting | ||||
70 | 90 | Peeling | Peeling –splitting | Peeling –splitting | Peeling –splitting | Splitting |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Jian, Q.; Zhou, J.; Huang, Q.; Li, L.; Niu, Y. The Breakage of Shape-Anisotropic Particles under Normal Contact with Different Particle Shape Parameters. Appl. Sci. 2021, 11, 7319. https://doi.org/10.3390/app11167319
Zhang Y, Jian Q, Zhou J, Huang Q, Li L, Niu Y. The Breakage of Shape-Anisotropic Particles under Normal Contact with Different Particle Shape Parameters. Applied Sciences. 2021; 11(16):7319. https://doi.org/10.3390/app11167319
Chicago/Turabian StyleZhang, Yanwei, Qiwei Jian, Jian Zhou, Qinglin Huang, Lin Li, and Yiran Niu. 2021. "The Breakage of Shape-Anisotropic Particles under Normal Contact with Different Particle Shape Parameters" Applied Sciences 11, no. 16: 7319. https://doi.org/10.3390/app11167319
APA StyleZhang, Y., Jian, Q., Zhou, J., Huang, Q., Li, L., & Niu, Y. (2021). The Breakage of Shape-Anisotropic Particles under Normal Contact with Different Particle Shape Parameters. Applied Sciences, 11(16), 7319. https://doi.org/10.3390/app11167319