Preference and Demand for Digital Pathology and Computer-Aided Diagnosis among Korean Pathologists: A Survey Study Focused on Prostate Needle Biopsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dr. Answer™ Project and PROMISE-P Software
2.2. Survey Design Outlines
3. Results
3.1. Participant Demographics
3.2. Preferences for and Perception of Digital Pathology
3.3. Preferences for and Perceptions of Using CAD Software in Prostate Needle Biopsy
3.4. Preferences for Dr. Answer™ CAD Software for Prostate Needle Biopsy ‘PROMISE-P’
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Griffin, J.; Treanor, D. Digital pathology in clinical use: Where are we now and what is holding us back? Histopathology 2017, 70, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.J.; Bottoms, D.; Treanor, D. Future-proofing pathology: The case for clinical adoption of digital pathology. J. Clin. Pathol. 2017, 70, 1010–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pallua, J.; Brunner, A.; Zelger, B.; Schirmer, M.; Haybaeck, J. The future of pathology is digital. Pathol. Res. Pract. 2020, 216, 153040. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Zhang, D.Y. Artificial intelligence and computational pathology. Lab. Investig. 2021, 101, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Thakur, N.; Yoon, H.; Chong, Y. Current Trends of Artificial Intelligence for Colorectal Cancer Pathology Image Analysis: A Systematic Review. Cancers 2020, 12, 1884. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.; Chong, Y.; Jung, C.K.; Kwak, T.-Y.; Lee, J.Y.; Park, J.; Rho, M.J.; Go, H. Introduction to digital pathology and computer-aided pathology. J. Pathol. Transl. Med. 2020, 54, 125–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huss, R.; Coupland, S.E. Software-assisted decision support in digital histopathology. J. Pathol. 2020, 250, 685–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulten, W.; Panel, I.P.I.E.; Balkenhol, M.; Belinga, J.-J.A.; Brilhante, A.; Çakır, A.; Egevad, L.; Eklund, M.; Farré, X.; Geronatsiou, K.; et al. Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists. Mod. Pathol. 2021, 34, 660–671. [Google Scholar] [CrossRef] [PubMed]
- Pantanowitz, L.; Quiroga-Garza, G.M.; Bien, L.; Heled, R.; Laifenfeld, D.; Linhart, C.; Sandbank, J.; Shach, A.A.; Shalev, V.; Vecsler, M.; et al. An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: A blinded clinical validation and deployment study. Lancet Digit. Health 2020, 2, e407–e416. [Google Scholar] [CrossRef]
- Bulten, W.; Pinckaers, H.; Van Boven, H.; Vink, R.; De Bel, T.; Van Ginneken, B.; Van Der Laak, J.; Hulsbergen-van de Kaa, C.; Litjens, G. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: A diagnostic study. Lancet Oncol. 2020, 21, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Nagpal, K.; Foote, D.; Tan, F.; Liu, Y.; Chen, P.-H.C.; Steiner, D.F.; Manoj, N.; Olson, N.; Smith, J.L.; Mohtashamian, A.; et al. Development and Validation of a Deep Learning Algorithm for Gleason Grading of Prostate Cancer from Biopsy Specimens. JAMA Oncol. 2020, 6, 1372–1379. [Google Scholar] [CrossRef]
- Park, J.; Rho, M.J.; Park, Y.H.; Jung, C.K.; Chong, Y.; Kim, C.-S.; Go, H.; Jeon, S.S.; Kang, M.; Lee, H.J.; et al. PROMISE CLIP Project: A Retrospective, Multicenter Study for Prostate Cancer that Integrates Clinical, Imaging and Pathology Data. Appl. Sci. 2019, 9, 2982. [Google Scholar] [CrossRef] [Green Version]
- Rho, M.J.; Park, J.; Moon, H.W.; Lee, C.; Nam, S.; Kim, D.; Kim, C.-S.; Jeon, S.S.; Kang, M.; Lee, J.Y. Dr. Answer AI for prostate cancer: Clinical outcome prediction model and service. PLoS ONE 2020, 15, e0236553. [Google Scholar] [CrossRef] [PubMed]
- Abels, E.; Pantanowitz, L.; Aeffner, F.; Zarella, M.; Van Der Laak, J.; Bui, M.M.; Vemuri, V.N.; Parwani, A.V.; Gibbs, J.; Agosto-Arroyo, E.; et al. Computational pathology definitions, best practices, and recommendations for regulatory guidance: A white paper from the Digital Pathology Association. J. Pathol. 2019, 249, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Baidoshvili, A.; Bucur, A.; Van Leeuwen, J.; Van Der Laak, J.; Kluin, P.; Van Diest, P.J. Evaluating the benefits of digital pathology implementation: Time savings in laboratory logistics. Histopathology 2018, 73, 784–794. [Google Scholar] [CrossRef] [PubMed]
- Azam, A.S.; Miligy, I.M.; Kimani, P.K.-U.; Maqbool, H.; Hewitt, K.; Rajpoot, N.M.; Snead, D.R.J. Diagnostic concordance and discordance in digital pathology: A systematic review and meta-analysis. J. Clin. Pathol. 2021, 74, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Arvaniti, E.; Fricker, K.S.; Moret, M.; Rupp, N.; Hermanns, T.; Fankhauser, C.; Wey, N.; Wild, P.J.; Rüschoff, J.H.; Claassen, M. Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Sci. Rep. 2018, 8, 12054. [Google Scholar] [CrossRef] [PubMed]
Number (%) | ||
---|---|---|
Sum | 164 (100) | |
Gender | Male | 67 (40.9) |
Female | 97 (59.1) | |
Age | Younger than 30 years | 74 (45.1) |
30–40 years | 46 (28) | |
Older than 50 years | 44 (26.8) | |
Career | 10 years or shorter | 71 (43.3) |
Between 11 to 20 years | 49 (29.9) | |
21 years or longer | 44 (26.8) | |
Position | Resident | 31 (18.9) |
Fellow | 15 (9.1) | |
Hospital pathologist | 22 (13.4) | |
Faculty | 74 (45.1) | |
Reference laboratory | 22 (13.4) | |
Specialty 1 | General surgical pathology | 81 (46.6) |
Uropathology | 18 (10.3) | |
Gynecopathology | 15 (8.6) | |
Gastrointestinal (GI) pathology | 29 (16.7) | |
Pulmonary pathology | 16 (9.2) | |
Hematopathology | 15 (8.6) | |
Molecular pathology | 19 (10.9) | |
Other specialty | 59 (33.9) |
Sum | Resident | Fellow | Hospital Pathologist | Junior Faculty | Senior Faculty | Junior Pathologist at a Reference Laboratory | Senior Pathologist at a Reference Laboratory | |
---|---|---|---|---|---|---|---|---|
Base for % 1 | (164) | (31) | (15) | (22) | (43) | (31) | (16) | (6) |
Expected benefits of introducing a digital pathology system (DPS) (Sum of top 1~3 in percentage) | ||||||||
Ability to browse digital slides | 59.8 | 77.4 | 80.0 | 36.4 | 60.5 | 45.2 | 68.8 | 50.0 |
Accessibility of multidisciplinary team care and conferencing | 56.7 | 38.7 | 73.3 | 54.5 | 62.8 | 87.1 | 18.8 | 16.7 |
Consultation with an expert | 49.4 | 19.4 | 46.7 | 68.2 | 44.2 | 61.3 | 56.3 | 100.0 |
Collation of big data | 32.9 | 32.3 | 33.3 | 27.3 | 41.9 | 29.0 | 37.5 | 0.0 |
Faster work process | 28.0 | 64.5 | 13.3 | 31.8 | 20.9 | 9.7 | 31.3 | 0.0 |
Higher income due to separate medical fee regulation for DPSs | 19.5 | 16.1 | 6.7 | 18.2 | 25.6 | 16.1 | 37.5 | 0.0 |
Education | 18.9 | 25.8 | 26.7 | 9.1 | 14.0 | 32.3 | 0.0 | 16.7 |
Diagnostic accuracy | 16.5 | 16.1 | 6.7 | 22.7 | 14.0 | 6.5 | 31.3 | 50.0 |
Decreased workload | 12.2 | 6.5 | 13.3 | 22.7 | 9.3 | 12.9 | 12.5 | 16.7 |
Other (telecommuting, decreased slide storage space, etc.) | 6.1 | 3.2 | 0.0 | 9.1 | 7.0 | 0.0 | 6.3 | 50.0 |
Sum | Resident & Fellow | General Surgical Pathology | Uropathology | Other Specialty | |
---|---|---|---|---|---|
Base for % | (164) | (46) | (45) | (12) | (61) |
Inconvenience factors of prostate needle biopsy diagnosis (average per 100 points) | |||||
Indicating existence/exact location of lesions | 47.0 | 61.41 | 53.33 | 47.92 | 61.07 |
Making a pathological diagnosis | 14.0 | 39.13 | 33.89 | 20.83 | 34.84 |
Defining the Gleason Score/grade group | 39.0 | 51.63 | 53.33 | 41.67 | 55.74 |
Counting the number of lesions | 50.6 | 58.70 | 60.00 | 64.58 | 63.52 |
Measuring the tumor volume | 73.2 | 67.39 | 76.11 | 85.42 | 80.33 |
Measuring the tumor length and core length | 72.6 | 69.57 | 73.33 | 87.50 | 76.23 |
Expected benefits of prostate needle biopsy CAD software (Sum of top 1–3 in percentage) | |||||
More accurate and reproducible measurements such as lengths and percentages | 53.7 | 56.5 | 48.9 | 66.7 | 52.5 |
Easier measurements | 38.4 | 34.8 | 37.8 | 41.7 | 41.0 |
More convenient reading and diagnosis | 34.8 | 47.8 | 26.7 | 25.0 | 32.8 |
More accurate and reproducible Gleason scoring | 31.7 | 19.6 | 37.8 | 33.3 | 36.1 |
More accurate pathological diagnosis | 31.1 | 28.3 | 26.7 | 50.0 | 32.8 |
Much more objective diagnosis | 31.1 | 30.4 | 26.7 | 33.3 | 34.4 |
Shortened reading and diagnostic times | 27.4 | 26.1 | 28.9 | 8.3 | 31.1 |
Increased revenue likely thanks to insurance coverage | 22.6 | 19.6 | 28.9 | 25.0 | 19.7 |
Reduced workload | 15.9 | 23.9 | 17.8 | 8.3 | 9.8 |
Research | 7.9 | 8.7 | 13.3 | 8.3 | 3.3 |
More reliable relationship with clinicians | 5.5 | 4.3 | 6.7 | 0.0 | 6.6 |
Sum | Resident + Fellow | Surgical Pathology | Uropathology | Other Specialty | |
---|---|---|---|---|---|
Base for % | (164) | (46) | (45) | (12) | (61) |
Perceived usefulness of Dr. Answer™ PROMISE-P (average per 100 points) | |||||
Decreased diagnostic time | 45.1 | 56.5 | 42.2 | 50.0 | 37.7 |
Improved diagnostic quality | 67.1 | 65.2 | 66.7 | 75.0 | 67.2 |
Smooth and effective diagnosis | 55.5 | 56.5 | 53.3 | 50.0 | 57.4 |
Comprehensive diagnosis | 53.7 | 50.0 | 48.9 | 41.7 | 62.3 |
Convenient diagnosis | 53.7 | 54.3 | 51.1 | 50.0 | 55.7 |
Intention to use Dr. Answer™ PROMISE-P (average per 100 points) | |||||
Intention to introduce | 43.9 | 50.00 | 40.00 | 58.33 | 39.34 |
Intention to diagnose | 57.9 | 56.52 | 55.56 | 66.67 | 59.02 |
Accurate diagnosis and utilization of patient information | 51.8 | 50.00 | 53.33 | 58.33 | 50.82 |
Intention to use continuously | 50.6 | 50.00 | 53.33 | 66.67 | 45.90 |
Intention to recommend | 42.1 | 43.48 | 46.67 | 50.00 | 36.07 |
Willingness to continue using | 33.5 | 30.43 | 44.44 | 25.00 | 29.51 |
Willingness to spread positive word of mouth | 44.5 | 45.65 | 51.11 | 50.00 | 37.70 |
Reduced workload you can expect when using Dr. Answer™ PROMISE-P (percentage) | |||||
Expected reduced working hours | 21.2 | 25.87 | 16.56 | 28.75 | 19.51 |
Improved pathological accuracy you can expect when using Dr. Answer™ PROMISE-P (percentage) | |||||
Expected accuracy | 26.9 | 26.96 | 24.44 | 33.75 | 27.30 |
Improved convenience you can expect when using Dr. Answer™ PROMISE-P (percentage) | |||||
Expected convenience | 26.9 | 29.52 | 27.67 | 35.42 | 28.03 |
Reduced diagnostic time you can expect when using Dr. Answer™ PROMISE-P (percentage) | |||||
Expected reduced diagnosing hours | 26.9 | 22.20 | 17.69 | 16.67 | 19.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, S.J.; Chong, Y.; Jung, C.K.; Kwak, T.-Y.; Lee, J.Y.; Park, J.; Rho, M.J.; Go, H. Preference and Demand for Digital Pathology and Computer-Aided Diagnosis among Korean Pathologists: A Survey Study Focused on Prostate Needle Biopsy. Appl. Sci. 2021, 11, 7380. https://doi.org/10.3390/app11167380
Nam SJ, Chong Y, Jung CK, Kwak T-Y, Lee JY, Park J, Rho MJ, Go H. Preference and Demand for Digital Pathology and Computer-Aided Diagnosis among Korean Pathologists: A Survey Study Focused on Prostate Needle Biopsy. Applied Sciences. 2021; 11(16):7380. https://doi.org/10.3390/app11167380
Chicago/Turabian StyleNam, Soo Jeong, Yosep Chong, Chan Kwon Jung, Tae-Yeong Kwak, Ji Youl Lee, Jihwan Park, Mi Jung Rho, and Heounjeong Go. 2021. "Preference and Demand for Digital Pathology and Computer-Aided Diagnosis among Korean Pathologists: A Survey Study Focused on Prostate Needle Biopsy" Applied Sciences 11, no. 16: 7380. https://doi.org/10.3390/app11167380
APA StyleNam, S. J., Chong, Y., Jung, C. K., Kwak, T. -Y., Lee, J. Y., Park, J., Rho, M. J., & Go, H. (2021). Preference and Demand for Digital Pathology and Computer-Aided Diagnosis among Korean Pathologists: A Survey Study Focused on Prostate Needle Biopsy. Applied Sciences, 11(16), 7380. https://doi.org/10.3390/app11167380