Conceptual Design Evaluation Considering Confidence Based on Z-AHP-TOPSIS Method
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Fuzzy Linguistic Approach
3.1.1. Fuzzy Set
3.1.2. Z-Number
3.2. The Method of Converting Z-Number to Regular Fuzzy Number
3.3. Z-AHP
3.4. Z-TOPSIS
3.5. The Framework of the Proposed Method
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, J. Ranking engineering design concepts using a fuzzy outranking preference model. Fuzzy Sets Syst. 2001, 119, 161–170. [Google Scholar] [CrossRef]
- Yang, Q.; Kherbachi, S.; Hong, Y.S.; Shan, C. Identifying and managing coordination complexity in global product development project. Int. J. Project Manag. 2015, 33, 1464–1475. [Google Scholar] [CrossRef]
- Akay, D.; Kulak, O.; Henson, B. Conceptual design evaluation using interval type-2 fuzzy information axiom. Comput. Ind. 2011, 62, 138–146. [Google Scholar] [CrossRef]
- Herrera, F.; Herrera-Viedma, E. Linguistic decision analysis: Steps for solving decision problems under linguistic information. Fuzzy Sets Syst. 2000, 115, 67–82. [Google Scholar] [CrossRef]
- Ashkenasy, G.; Ghadiri, M.R. Boolean logic functions of a synthetic peptide network. J. Am. Chem. Soc. 2004, 126, 11140–11141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zadeh, L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1999, 100, 9–34. [Google Scholar] [CrossRef]
- de Sáa, S.R.; Gil, M.Á.; González-Rodríguez, G.; López, M.T.; Lubiano, M.A. Fuzzy rating scale-based questionnaires and their statistical analysis. IEEE Trans. Fuzzy Syst. 2014, 23, 111–126. [Google Scholar] [CrossRef]
- Zadeh, L.A. A note on Z-numbers. Inf. Sci. 2011, 181, 2923–2932. [Google Scholar] [CrossRef]
- Smets, P. Imperfect Information: Imprecision and Uncertainty; Springer: Boston, MA, USA, 1997; pp. 225–254. [Google Scholar] [CrossRef]
- Julià, E.; Tillig, F.; Ringsberg, J.W. Concept Design and Performance Evaluation of a Fossil-Free Operated Cargo Ship with Unlimited Range. Sustainability 2020, 12, 6609. [Google Scholar] [CrossRef]
- Qi, J.; Hu, J.; Peng, Y.H. New design concept evaluation method involving customer preferences based on rough distance to redefined ideal solution. Comput. Ind. Eng. 2020, 147, 106677. [Google Scholar] [CrossRef]
- Filip, D. Modern methods and tools to improve the production processes from small series and unique production. Acta Tech. 2018, 61, 4. [Google Scholar]
- Sharaf, H.K.; Ishak, M.R.; Sapuan, S.M.; Yidrisn, N. Conceptual design of the cross-arm for the application in the transmission towers by using TRIZ–morphological chart–ANP methods. J. Mater. Res. Technol. 2020, 9, 9182–9188. [Google Scholar] [CrossRef]
- Geng, X.; Chu, X. A new importance–performance analysis approach for customer satisfaction evaluation supporting PSS design. Expert Syst. Appl. 2012, 39, 1492–1502. [Google Scholar] [CrossRef]
- Prasad, S.; Khanduja, D.; Sharma, S.K. Integration of SWOT analysis with hybrid modified TOPSIS for the lean strategy evaluation. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018, 232, 1295–1309. [Google Scholar] [CrossRef]
- Rondini, A.; Bertoni, M.; Pezzotta, G. An IPA based method for PSS design concept assessment. Procedia CIRP 2017, 64, 277–282. [Google Scholar] [CrossRef]
- Lu, M.T.; Hsu, C.C.; Liou, J.J.H.; Lo, H.W. A hybrid MCDM and sustainability-balanced scorecard model to establish sustainable performance evaluation for international airports. J. Air Transp. Manag. 2018, 71, 9–19. [Google Scholar] [CrossRef]
- Sedghiyan, D.; Ashouri, A.; Maftouni, N.; Xiong, Q.; Rezaee, E.; Sadeghi, S. Prioritization of renewable energy resources in five climate zones in Iran using AHP, hybrid AHP-TOPSIS and AHP-SAW methods. Sustain. Energy Technol. Assess. 2021, 44, 101045. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Ji, S.; Song, Z. Renewable energy investment risk assessment for nations along China’s Belt & Road Initiative: An ANP-cloud model method. Energy 2020, 190, 116381. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R. A novel plithogenic TOPSIS-CRITIC model for sustainable supply chain risk management. J. Clean. Prod. 2020, 247, 119586. [Google Scholar] [CrossRef]
- Pamucar, D.; Deveci, M.; Canıtez, F.; Lukovac, V. Selecting an airport ground access mode using novel fuzzy LBWA-WASPAS-H decision making model. Eng. Appl. Artif. Intell. 2020, 93, 103703. [Google Scholar] [CrossRef]
- Lerede, D.; Pinto, G.; Saccone, M.; Bustreo, C.; Capozzoli, A.; Savoldi, L. Application of a Stochastic Multicriteria Acceptability Analysis to support decision-making within a macro-scale energy model: Case study of the electrification of the road European transport sector. Energy 2021, 236, 121444. [Google Scholar] [CrossRef]
- Coco, G.; Lagravinese, R.; Resce, G. Beyond the weights: A multicriteria approach to evaluate inequality in education. J. Econ. Inequal. 2020, 18, 469–489. [Google Scholar] [CrossRef]
- Jasiulewicz-Kaczmarek, M.; Żywica, P.; Gola, A. Fuzzy set theory driven maintenance sustainability performance assessment model: A multiple criteria approach. J. Intell. Manuf. 2021, 32, 1497–1515. [Google Scholar] [CrossRef]
- Yan, L.; Tang, X.; Huang, L.; Chen, B. Adaptive mask generating algorithm based on the fuzzy set theory for the weighted least-squares phase unwrapping. Opt. Lasers Eng. 2021, 146, 106721. [Google Scholar] [CrossRef]
- Shaverdi, M.; Ramezani, I.; Tahmasebi, R.; Rostamy, A.A.A. Combining fuzzy AHP and fuzzy TOPSIS with financial ratios to design a novel performance evaluation model. Int. J. Fuzzy Syst. 2016, 18, 248–262. [Google Scholar] [CrossRef]
- Abdel-Baset, M.; Chang, V.; Gamal, A.; Smarandache, F. An integrated neutrosophic ANP and VIKOR method for achieving sustainable supplier selection: A case study in importing field. Comput. Ind. 2019, 106, 94–110. [Google Scholar] [CrossRef]
- Goswami, M.; Daultani, Y.; De, A. Decision modeling and analysis in new product development considering supply chain uncertainties: A multi-functional expert based approach. Expert Syst. Appl. 2021, 166, 114016. [Google Scholar] [CrossRef]
- Onari, M.A.; Yousefi, S.; Rezaee, M.J. Risk assessment in discrete production processes considering uncertainty and reliability: Z-number multi-stage fuzzy cognitive map with fuzzy learning algorithm. Artif. Intell. Rev. 2021, 54, 1349–1383. [Google Scholar] [CrossRef]
- Ghahtarani, A. A new portfolio selection problem in bubble condition under uncertainty: Application of Z-number theory and fuzzy neural network. Expert Syst. Appl. 2021, 177, 114944. [Google Scholar] [CrossRef]
- Shen, K.; Wang, J. Z-VIKOR method based on a new comprehensive weighted distance measure of Z-number and its application. IEEE Trans. Fuzzy Syst. 2018, 26, 3232–3245. [Google Scholar] [CrossRef]
- Hendiani, S.; Bagherpour, M.; Mahmoudi, A.; Liao, H. Z-number based earned value management (ZEVM): A novel pragmatic contribution towards a possibilistic cost-duration assessment. Comput. Ind. Eng. 2020, 143, 106430. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.; Zhang, H. Multi-criteria decision-making method based on distance measure and Choquet integral for linguistic Z-numbers. Cognit. Comput. 2017, 9, 827–842. [Google Scholar] [CrossRef]
- Peng, H.; Wang, J. Hesitant uncertain linguistic Z-numbers and their application in multi-criteria group decision-making problems. Int. J. Fuzzy Syst. 2017, 19, 1300–1316. [Google Scholar] [CrossRef]
- Ren, Z.; Liao, H.; Liu, Y. Generalized Z-numbers with hesitant fuzzy linguistic information and its application to medicine selection for the patients with mild symptoms of the COVID-19. Comput. Ind. Eng. 2020, 145, 106517. [Google Scholar] [CrossRef]
- Aydoğan, S.; Günay, E.E.; Akay, D.; Kremer, G.E.O. Concept design evaluation by using Z-axiomatic design. Comput. Ind. 2020, 122, 103278. [Google Scholar] [CrossRef]
- Liu, Y.; Eckert, C.M.; Earl, C. A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Syst. Appl. 2020, 161, 113738. [Google Scholar] [CrossRef]
- Vinogradova-Zinkevič, I.; Podvezko, V.; Zavadskas, E.K. Comparative Assessment of the Stability of AHP and FAHP Methods. Symmetry 2021, 13, 479. [Google Scholar] [CrossRef]
- Chang, D.Y. Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 1996, 95, 649–655. [Google Scholar] [CrossRef]
- Shih, H.S.; Shyur, H.J.; Lee, E.S. An Extension of TOPSIS for Group Decision Making. Math. Comput. Model. 2007, 45, 801–813. [Google Scholar] [CrossRef]
- Akay, D.; Duran, B.U.; Duran, E.; Henson, B.; Boran, F.E. Developing a Labeled Affective Magnitude scale and Fuzzy Linguistic scale for tactile feeling. Hum. Factors Ergon. Manuf. Serv. Ind. 2021, 31, 13–26. [Google Scholar] [CrossRef]
- Brouwer, R.K. Fuzzy set covering of a set of ordinal attributes without parameter sharing. Fuzzy Sets Syst. 2006, 157, 1775–1786. [Google Scholar] [CrossRef]
- Kumar, P.; Tandon, P. A paradigm for customer-driven product design approach using extended axiomatic design. J. Intell. Manuf. 2019, 30, 589–603. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, C.; Zhuang, J.; Han, H.; Yuan, B.; Liu, J.; Yang, K.; Zhuang, S.; Li, R. Evaluation of Cloud 3D Printing Order Task Execution Based on the AHP-TOPSIS Optimal Set Algorithm and the Baldwin Effect. Micromachines 2021, 12, 801. [Google Scholar] [CrossRef] [PubMed]
- Roszkowska, E.; Kusterka-Jefmańska, M.; Jefmański, B. Intuitionistic Fuzzy TOPSIS as a Method for Assessing Socioeconomic Phenomena on the Basis of Survey Data. Entropy 2021, 23, 563. [Google Scholar] [CrossRef] [PubMed]
- Alkharabsheh, A.; Duleba, S. Public Transportation Service Quality Evaluation during the COVID-19 Pandemic in Amman City Using Integrated Approach Fuzzy AHP-Kendall Model. Vehicles 2021, 3, 330–340. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Dong, C.; Guo, F.; Zhang, F.; Zhang, Q. Quantitative Analysis of Global Terrorist Attacks Based on the Global Terrorism Database. Sustainability 2021, 13, 7598. [Google Scholar] [CrossRef]
- Azam, T.; Wang, S.; Mohsin, M.; Nazam, M.; Hashim, M.; Baig, S.A.; Zia-ur-Rehman, M. Does Stakeholder Pressure Matters in Adopting Sustainable Supply Chain Initiatives? Insights from Agro-Based Processing Industry. Sustainability 2021, 13, 7278. [Google Scholar] [CrossRef]
Criterion | Customer Requirements |
---|---|
C1 | Relative capacity |
C2 | Multi-function |
C3 | Convenience |
C4 | Service life |
C5 | Cost |
Criterion | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
C1 | (1, 1, 1) | (G, N) | (E, W) | (V, A) | (F, N) |
C2 | - | (1, 1, 1) | (F, N) | (F, A) | (G, N) |
C3 | - | - | (1, 1, 1) | (P, W) | (P, A) |
C4 | - | - | - | (1, 1, 1) | (P, A) |
C5 | - | - | - | - | (1, 1, 1) |
Criterion | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
C1 | (1, 1, 1) | (2.12, 3.54, 4.95) | (3.09, 3.97, 3.97) | (4.48, 6.28, 8.08) | (0.71, 2.12, 3.54) |
C2 | (0.20, 0.28, 0.47) | (1, 1, 1) | (0.71, 2.12, 3.54) | (0.87, 2.60, 4.33) | (2.12, 3.54, 4.95) |
C3 | (0.25, 0.25, 0.32) | (0.28, 0.47, 1.41) | (1, 1, 1) | (0.5, 0.5, 1.5) | (0.87, 0.87, 2.60) |
C4 | (0.12, 0.16, 0.22) | (0.23, 0.38, 1.15) | (0.67, 2.0, 2.0) | (1, 1, 1) | (0.87, 0.87, 2.60) |
C5 | (0.28, 0.47, 1.41) | (0.20, 0.28, 0.47) | (0.39, 1.15, 1.15) | (0.39, 1.15, 1.15) | (1, 1, 1) |
Criterion → Alternative ↓ | C1 w1 = 0.49 | C2 w2 = 0.32 | C3 w3 = 0.08 | C4 w4 = 0.09 | C5 w5 = 0.007 |
---|---|---|---|---|---|
Design 1 | (P, W) | (F, N) | (G, A) | (G, A) | (G, A) |
Design 2 | (E, A) | (V, A) | (F, A) | (E, A) | (P, A) |
Design 3 | (F, W) | (F, W) | (V, N) | (F, W) | (G, W) |
Design 4 | (P, N) | (G, N) | (V, A) | (V, A) | (V, A) |
Criterion → Alternative ↓ | C1 w1 = 0.49 | C2 w2 = 0.32 | C3 w3 = 0.08 | C4 w4 = 0.09 | C5 w5 = 0.007 |
---|---|---|---|---|---|
Design 1 | (0.25, 0.25, 0.74) | (0.23, 0.69, 1.15) | (0.21, 0.36, 0.50) | (0.25, 0.41, 0.57) | (0.02, 0.034, 0.047) |
Design 2 | (2.98, 3.83, 3.83) | (1.41, 1.97, 2.53) | (0.07,0.21,0.36) | (0.57, 0.74, 0.74) | (0.007, 0.007, 0.02) |
Design 3 | (0.25, 0.74, 1.23) | (0.16, 0.49, 0.81) | (0.29, 0.41, 0.52) | (0.05, 0.14, 0.24) | (0.012, 0.019,0.027) |
Design 4 | (0.35, 0.35, 1.04) | (0.69, 1.15, 1.61) | (0.36, 0.50, 0.64) | (0.41, 0.57, 0.74) | (0.034, 0.047, 0.061) |
Criterion | Design 1 | Design 2 | Design 3 | Design 4 |
---|---|---|---|---|
9.179 | 10.715 | 6.327 | 12.462 | |
9.009 | 13.865 | 6.596 | 12.894 | |
Ci | 0.495 | 0.564 | 0.510 | 0.509 |
Design Possibility | Ci | Rank |
---|---|---|
Design 1 | 0.495 | 4 |
Design 2 | 0.564 | 1 |
Design 3 | 0.510 | 2 |
Design 4 | 0.509 | 3 |
Criterion | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
C1 | (1, 1, 1) | (G, L) | (V, U) | (V, L) | (F, W) |
C2 | - | (1, 1, 1) | (G, N) | (F, A) | (V, L) |
C3 | - | - | (1, 1, 1) | (P, N) | (G, L) |
C4 | - | - | - | (1, 1, 1) | (P, L) |
C5 | - | - | - | - | (1, 1, 1) |
Criterion → Alternative ↓ | C1 w1 = 0.41 | C2 w2 = 0.35 | C3 w3 = 0.17 | C4 w4 = 0.05 | C5 w5 = 0.02 |
---|---|---|---|---|---|
Design 1 | (P, W) | (F, N) | (G, A) | (G, A) | (G, A) |
Design 2 | (E, A) | (V, A) | (F, A) | (E, A) | (P, A) |
Design 3 | (F, W) | (F, W) | (V, N) | (F, W) | (G, W) |
Design 4 | (P, N) | (G, N) | (V, A) | (V, A) | (V, A) |
Design Possibility | Ci | Rank |
---|---|---|
Design 1 | 0.5319 | 2 |
Design 2 | 0.5449 | 1 |
Design 3 | 0.5253 | 4 |
Design 4 | 0.5316 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Chen, J.; Wang, W.; Qin, Q. Conceptual Design Evaluation Considering Confidence Based on Z-AHP-TOPSIS Method. Appl. Sci. 2021, 11, 7400. https://doi.org/10.3390/app11167400
Liu Q, Chen J, Wang W, Qin Q. Conceptual Design Evaluation Considering Confidence Based on Z-AHP-TOPSIS Method. Applied Sciences. 2021; 11(16):7400. https://doi.org/10.3390/app11167400
Chicago/Turabian StyleLiu, Qinghua, Jiadui Chen, Weixing Wang, and Qing Qin. 2021. "Conceptual Design Evaluation Considering Confidence Based on Z-AHP-TOPSIS Method" Applied Sciences 11, no. 16: 7400. https://doi.org/10.3390/app11167400
APA StyleLiu, Q., Chen, J., Wang, W., & Qin, Q. (2021). Conceptual Design Evaluation Considering Confidence Based on Z-AHP-TOPSIS Method. Applied Sciences, 11(16), 7400. https://doi.org/10.3390/app11167400