SARS-CoV-2 Treatment: Current Therapeutic Options and the Pursuit of Tailored Therapy
Abstract
:1. Introduction
2. Search Strategy
3. Symptomatic Treatment
4. Antiviral Therapy
Remdesivir
5. Chloroquine and Hydroxychloroquine
6. Lopinavir/Ritonavir
7. Other Antivirals
8. Immunomodulants
9. Corticosteroids
10. Tocilizumab
11. Baricitinib
12. Other Immunomodulant Drugs
13. Monoclonal Antibodies
Bamlanivimab/Etesevimab
14. Casirivimab/Imdevimab
15. Discussion
16. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Liu, C.; Liu, G.; Luo, W.; Xia, N. COVID-19: Progress in diagnostics, therapy and vaccination. Theranostics 2020, 10, 7821–7835. [Google Scholar] [CrossRef]
- Izda, V.; Jeffries, M.A.; Sawalha, A.H. COVID-19: A review of therapeutic strategies and vaccine candidates. Clin. Immunol. 2021, 222, 108634. [Google Scholar] [CrossRef]
- Gupta, A.; Madhavan, M.V.; Sehgal, K.; Nair, N.; Mahajan, S.; Sehrawat, T.S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J.C.; Wan, E.Y.; et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020, 26, 1017–1032. [Google Scholar] [CrossRef]
- NIH. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. Available online: https://covid19treatmentguidelines.nih.gov/ (accessed on 12 August 2021).
- Siddiqi, H.K.; Mehra, M.R. COVID-19 illness in native and immunosuppressed states: A clinical–therapeutic staging proposal. J. Hear. Lung Transplant. 2020, 39, 405–407. [Google Scholar] [CrossRef] [Green Version]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/who_table (accessed on 12 August 2021).
- Kucharz, E.J.; Szántó, S.; Ivanova Goycheva, M.; Petronijević, M.; Šimnovec, K.; Domżalski, M.; Gallelli, L.; Kamenov, Z.; Konstantynowicz, J.; Radunović, G.; et al. Endorsement by Central European experts of the revised ESCEO algorithm for the management of knee osteoarthritis. Rheumatol. Int. 2019, 39, 1117–1123. [Google Scholar] [CrossRef] [Green Version]
- Gallelli, L.; Galasso, O.; Urzino, A.; Saccà, S.; Falcone, D.; Palleria, C.; Longo, P.; Corigliano, A.; Terracciano, R.; Savino, R.; et al. Characteristics and clinical implications of the pharmacokinetic profile of ibuprofen in patients with knee osteoarthritis. Clin. Drug Investig. 2012, 32, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Gallelli, L.; Colosimo, M.; Pirritano, D.; Ferraro, M.; De Fazio, S.; Marigliano, N.M.; De Sarro, G. Retrospective evaluation of adverse drug reactions induced by nonsteroidal anti-inflammatory drugs. Clin. Drug Investig. 2007, 27, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Gavriatopoulou, M.; Ntanasis-Stathopoulos, I.; Korompoki, E.; Fotiou, D.; Migkou, M.; Tzanninis, I.G.; Psaltopoulou, T.; Kastritis, E.; Terpos, E.; Dimopoulos, M.A. Emerging treatment strategies for COVID-19 infection. Clin. Exp. Med. 2021, 21, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Ricciotti, E.; Laudanski, K.; Fitzgerald, G.A. Nonsteroidal anti-inflammatory drugs and glucocorticoids in COVID-19. Adv. Biol. Regul. 2021, 81, 100818. [Google Scholar] [CrossRef]
- Talasaz, A.H.; Kakavand, H.; Van Tassell, B.; Aghakouchakzadeh, M.; Sadeghipour, P.; Dunn, S.; Geraiely, B. Cardiovascular Complications of COVID-19: Pharmacotherapy Perspective. Cardiovasc. Drugs Ther. 2021, 35, 249–259. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Summary of Product Characteristics-Veklury. Available online: https://www.ema.europa.eu/en/documents/product-information/veklury-epar-product-information_en.pdf (accessed on 12 August 2021).
- Jorgensen, S.C.J.; Kebriaei, R.; Dresser, L.D. Remdesivir: Review of Pharmacology, Pre-clinical Data, and Emerging Clinical Experience for COVID-19. Pharmacotherapy 2020, 40, 659–671. [Google Scholar] [CrossRef]
- Gottlieb, R.L.; Nirula, A.; Chen, P.; Boscia, J.; Heller, B.; Morris, J.; Huhn, G.; Cardona, J.; Mocherla, B.; Stosor, V.; et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: A randomized clinical trial. JAMA J. Am. Med. Assoc. 2021, 325, 632–644. [Google Scholar] [CrossRef]
- European Medicines Agency Olumiant-Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/olumiant-epar-product-information_en.pdf (accessed on 12 August 2021).
- Kalil, A.C.; Patterson, T.F.; Mehta, A.K.; Tomashek, K.M.; Wolfe, C.R.; Ghazaryan, V.; Marconi, V.C.; Ruiz-Palacios, G.M.; Hsieh, L.; Kline, S.; et al. Baricitinib plus Remdesivir for Hospitalized Adults with COVID-19. N. Engl. J. Med. 2021, 384, 795–807. [Google Scholar] [CrossRef] [PubMed]
- Weinreich, D.M.; Sivapalasingam, S.; Norton, T.; Ali, S.; Gao, H.; Bhore, R.; Musser, B.J.; Soo, Y.; Rofail, D.; Im, J.; et al. REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with COVID-19. N. Engl. J. Med. 2021, 384, 238–251. [Google Scholar] [CrossRef] [PubMed]
- Gautret, P.; Lagier, J.; Parola, P.; Hoang, V.T. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 2020, 56, 105949. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, A.B.; Zampieri, F.G.; Rosa, R.G.; Azevedo, L.C.P.; Veiga, V.C.; Avezum, A.; Damiani, L.P.; Marcadenti, A.; Kawano-Dourado, L.; Lisboa, T.; et al. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate COVID-19. N. Engl. J. Med. 2020, 383, 2041–2052. [Google Scholar] [CrossRef] [PubMed]
- Ramamoorthy, S.; Cidlowski, J.A. Corticosteroids—Mechanisms of action in health and disease. Rheum. Dis. Clin. N. Am. 2016, 42, 15–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19) A Review. JAMA J. Am. Med. Assoc. 2020, 323, 1824–1836. [Google Scholar] [CrossRef]
- Joshi, S.; Parkar, J.; Ansari, A.; Vora, A.; Talwar, D.; Tiwaskar, M.; Patil, S.; Barkate, H. Role of Favipiravir in the Treatment of COVID-19. Int. J. Infect. Dis. 2021, 102, 501–508. [Google Scholar] [CrossRef]
- Rajter, J.C.; Sherman, M.S.; Fatteh, N.; Vogel, F.; Sacks, J.; Rajter, J.J. Use of Ivermectin Is Associated with Lower Mortality in Hospitalized Patients With Coronavirus Disease 2019: The Ivermectin in COVID Nineteen Study. Chest 2021, 159, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, S.; Rheinstein, P.H. Ivermectin docks to the SARS-CoV-2 spike receptor-binding domain attached to ACE2. In Vivo 2020, 34, 3023–3026. [Google Scholar] [CrossRef] [PubMed]
- Zeeshan Khan Chachar, A.; Ahmad Khan, K.; Asif, M.; Tanveer, K.; Khaqan, A.; Basri, R. Effectiveness of Ivermectin in SARS-CoV-2/COVID-19 Patients. Int. J. Sci. 2020, 9, 31–35. [Google Scholar] [CrossRef]
- European Medicines Agency. Kaletra-Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/kaletra-epar-product-information_en.pdf (accessed on 12 August 2021).
- Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; et al. A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe COVID-19. N. Engl. J. Med. 2020, 382, 1787–1799. [Google Scholar] [CrossRef]
- Horby, P.W.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Emberson, J.; Palfreeman, A.; Raw, J.; Elmahi, E.; Prudon, B.; et al. Lopinavir–ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2020, 396, 1345–1352. [Google Scholar] [CrossRef]
- Repurposed Antiviral Drugs for COVID-19—Interim WHO Solidarity Trial Results. N. Engl. J. Med. 2021, 384, 497–511. [CrossRef]
- Grein, J.; Ohmagari, N.; Shin, D.; Diaz, G.; Asperges, E.; Castagna, A.; Feldt, T.; Green, G.; Green, M.L.; Lescure, F.-X.; et al. Compassionate Use of Remdesivir for Patients with Severe COVID-19. N. Engl. J. Med. 2020, 382, 2327–2336. [Google Scholar] [CrossRef] [PubMed]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of COVID-19—Final Report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef]
- Burwick, R.M.; Yawetz, S.; Stephenson, K.E.; Collier, A.-R.Y.; Sen, P.; Blackburn, B.G.; Kojic, E.M.; Hirshberg, A.; Suarez, J.F.; Sobieszczyk, M.E.; et al. Compassionate Use of Remdesivir in Pregnant Women with Severe Coronavirus Disease 2019. Clin. Infect. Dis. 2020, 1–9. [Google Scholar] [CrossRef]
- Salama, C.; Han, J.; Yau, L.; Reiss, W.G.; Kramer, B.; Neidhart, J.D.; Criner, G.J.; Kaplan-Lewis, E.; Baden, R.; Pandit, L.; et al. Tocilizumab in Patients Hospitalized with COVID-19 Pneumonia. N. Engl. J. Med. 2021, 384, 20–30. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2021, 397, 1637–1645. [CrossRef]
- REMAP-CAP Investigators. Interleukin-6 Receptor Antagonists in Critically Ill Patients with COVID-19. N. Engl. J. Med. 2021, 384, 1491–1502. [Google Scholar] [CrossRef]
- Marra, F.; Smolders, E.J.; El-Sherif, O.; Boyle, A.; Davidson, K.; Sommerville, A.J.; Marzolini, C.; Siccardi, M.; Burger, D.; Gibbons, S.; et al. Recommendations for Dosing of Repurposed COVID-19 Medications in Patients with Renal and Hepatic Impairment. Drugs R D 2021, 21, 9–27. [Google Scholar] [CrossRef]
- AIFA Riassunto delle Caratteristiche del Prodotto—Soldesam. 2021. Available online: https://sci-hub.ren/10.1017/S1121189X00010320 (accessed on 12 August 2021). [CrossRef] [Green Version]
- Lee, J.Y.; Vinayagamoorthy, N.; Han, K.; Kwok, S.K.; Ju, J.H.; Park, K.S.; Jung, S.H.; Park, S.W.; Chung, Y.J.; Park, S.H. Association of Polymorphisms of Cytochrome P450 2D6 with Blood Hydroxychloroquine Levels in Patients with Systemic Lupus Erythematosus. Arthritis Rheumatol. 2016, 68, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Browning, D.J. Hydroxychloroquine and Chloroquine Retinopathy; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 9781493905973. [Google Scholar]
- European Medicines Agency. Neofordex—Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/neofordex-epar-product-information_en.pdf (accessed on 12 August 2021).
- Du, Y.X.; Chen, X.P. Favipiravir: Pharmacokinetics and Concerns About Clinical Trials for 2019-nCoV Infection. Clin. Pharmacol. Ther. 2020, 108, 242–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canga, A.G.; Prieto, A.M.S.; Diez Liébana, M.J.; Martínez, N.F.; Sierra Vega, M.; García Vieitez, J.J. The pharmacokinetics and interactions of ivermectin in humans—A mini-review. AAPS J. 2008, 10, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Duthaler, U.; Suenderhauf, C.; Karlsson, M.O.; Hussner, J.; Meyer zu Schwabedissen, H.; Krähenbühl, S.; Hammann, F. Population pharmacokinetics of oral ivermectin in venous plasma and dried blood spots in healthy volunteers. Br. J. Clin. Pharmacol. 2019, 85, 626–633. [Google Scholar] [CrossRef] [PubMed]
- AIFA Riassunto delle caratteristiche del prodotto-Ivermectina. 2021. Available online: https://farmaci.agenziafarmaco.gov.it/aifa/servlet/PdfDownloadServlet?pdfFileName=footer_007073_043463_RCP.pdf&sys=m0b1l3 (accessed on 12 August 2021).
- Croxtall, J.D.; Perry, C.M. LopinavirRitonavir: A review of its use in the management of HIV-1 infection. Drugs 2010, 70, 1885–1915. [Google Scholar] [CrossRef]
- European Medicines Agency. Summary of Product Charcateristics—RoActemra; European Medicines Agency: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Ackley, T.W.; McManus, D.; Topal, J.E.; Cicali, B.; Shah, S. A valid warning or clinical lore: An evaluation of safety outcomes of remdesivir in patients with impaired renal function from a multicenter matched cohort. Antimicrob. Agents Chemother. 2021, 65, 1–8. [Google Scholar] [CrossRef]
- Pettit, N.N.; Pisano, J.; Nguyen, C.T.; Lew, A.K.; Hazra, A.; Sherer, R.; Mullane, K. Remdesivir Use in the Setting of Severe Renal Impairment: A Theoretical Concern or Real Risk? Clin. Infect. Dis. 2020, ciaa1851. [Google Scholar] [CrossRef] [PubMed]
- Hodge, C.; Marra, F.; Marzolini, C.; Boyle, A.; Gibbons, S.; Siccardi, M.; Burger, D.; Back, D.; Khoo, S. Drug interactions: A review of the unseen danger of experimental COVID-19 therapies. J. Antimicrob. Chemother. 2020, 75, 3417–3424. [Google Scholar] [CrossRef] [PubMed]
- Olender, S.A.; Walunas, T.L.; Martinez, E.; Perez, K.K.; Castagna, A.; Wang, S.; Kurbegov, D.; Goyal, P.; Ripamonti, D.; Balani, B.; et al. Remdesivir versus Standard-of-Care for Severe Coronavirus Disease 2019 Infection: An Analysis of 28-Day Mortality. Open Forum Infect. Dis. 2021, 1–9. [Google Scholar] [CrossRef]
- Olender, S.A.; Perez, K.K.; Go, A.S.; Balani, B.; Price-Haywood, E.G.; Shah, N.S.; Wang, S.; Walunas, T.L.; Swaminathan, S.; Slim, J.; et al. Remdesivir for Severe COVID-19 versus a Cohort Receiving Standard of Care. Clin. Infect. Dis. 2020, ciaa1041. [Google Scholar] [CrossRef] [PubMed]
- Asselah, T.; Durantel, D.; Pasmant, E.; Lau, G.; Schinazi, R.F. COVID-19: Discovery, diagnostics and drug development. J. Hepatol. 2021, 74, 168–184. [Google Scholar] [CrossRef]
- Savarino, A.; Boelaert, J.R.; Cassone, A.; Majori, G.; Cauda, R. Effects of chloroquine on viral infections: An old drug against today’s diseases? Lancet Infect. Dis. 2003, 3, 722–727. [Google Scholar] [CrossRef]
- AIFA Riassunto Delle Carattetistiche del Prodotto-Idrossiclorochina. 2020. Available online: https://farmaci.agenziafarmaco.gov.it/aifa/servlet/PdfDownloadServlet?pdfFileName=footer_000898_046074_RCP.pdf&sys=m0b1l3 (accessed on 12 August 2021).
- Ross, S.B.; Wilson, M.G.; Papillon-Ferland, L.; Elsayed, S.; Wu, P.E.; Battu, K.; Porter, S.; Rashidi, B.; Tamblyn, R.; Pilote, L.; et al. COVID-SAFER: Deprescribing Guidance for Hydroxychloroquine Drug Interactions in Older Adults. J. Am. Geriatr. Soc. 2020, 68, 1636–1646. [Google Scholar] [CrossRef]
- Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020, 30, 269–271. [Google Scholar] [CrossRef]
- Eze, P.; Mezue, K.N.; Nduka, C.U.; Obianyo, I.; Egbuche, O. Efficacy and safety of chloroquine and hydroxychloroquine for treatment of COVID-19 patients-a systematic review and meta-analysis of randomized controlled trials. Am. J. Cardiovasc. Dis. 2021, 11, 93–107. [Google Scholar]
- Schoergenhofer, C.; Jilma, B.; Stimpfl, T.; Karolyi, M.; Zoufaly, A. Pharmacokinetics of Lopinavir and Ritonavir in Patients Hospitalized with Coronavirus Disease 2019 (COVID-19). Ann. Intern. Med. 2020, 173, 670–672. [Google Scholar] [CrossRef] [PubMed]
- Choy, K.-T.; Wong, A.Y.-L.; Kaewpreedee, P.; Sia, S.F.; Chen, D.; Hui, K.P.Y.; Chu, D.K.W.; Chan, M.C.W.; Cheung, P.P.-H.; Huang, X.; et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020, 178, 104786. [Google Scholar] [CrossRef]
- Karolyi, M.; Omid, S.; Pawelka, E.; Jilma, B.; Stimpfl, T.; Schoergenhofer, C.; Seitz, T.; Traugott, M.; Wenisch, C.; Zoufaly, A. High dose lopinavir/ritonavir does not lead to sufficient plasma levels to inhibit SARS-CoV-2 in hospitalized COVID-19 patients. Front. Pharmacol. 2021, 12, 704767. [Google Scholar] [CrossRef] [PubMed]
- Overholser, B.R.; Foster, D.R. Opioid pharmacokinetic drug-drug interactions. Am. J. Manag. Care 2011, 17 (Suppl. 1), 276–287. [Google Scholar]
- Elens, L.; Langman, L.J.; Hesselink, D.A.; Bergan, S.; Moes, D.J.A.R.; Molinaro, M.; Venkataramanan, R.; Lemaitre, F. Pharmacologic Treatment of Transplant Recipients Infected With SARS-CoV-2: Considerations Regarding Therapeutic Drug Monitoring and Drug-Drug Interactions. Ther. Drug Monit. 2020, 42, 360–368. [Google Scholar] [CrossRef]
- Lemaitre, F.; Solas, C.; Grégoire, M.; Lagarce, L.; Elens, L.; Polard, E.; Saint-Salvi, B.; Sommet, A.; Tod, M.; Barin-Le Guellec, C. Potential drug–drug interactions associated with drugs currently proposed for COVID-19 treatment in patients receiving other treatments. Fundam. Clin. Pharmacol. 2020, 34, 530–547. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Östör, A.J.K.; Nisar, M.K. Interleukin-6 and cytochrome-P450, reason for concern? Rheumatol. Int. 2012, 32, 2601–2604. [Google Scholar] [CrossRef]
- Lim, S.; Bae, J.H.; Kwon, H.S.; Nauck, M.A. COVID-19 and diabetes mellitus: From pathophysiology to clinical management. Nat. Rev. Endocrinol. 2021, 17, 11–30. [Google Scholar] [CrossRef]
- Dabbous, H.M.; Abd-Elsalam, S.; El-Sayed, M.H.; Sherief, A.F.; Ebeid, F.F.S.; El Ghafar, M.S.A.; Soliman, S.; Elbahnasawy, M.; Badawi, R.; Tageldin, M.A. Efficacy of favipiravir in COVID-19 treatment: A multi-center randomized study. Arch. Virol. 2021, 166, 949–954. [Google Scholar] [CrossRef]
- Malhani, A.A.; Enani, M.A.; Sharif-Askari, F.S.; Alghareeb, M.R.; Bin-Brikan, R.T.; AlShahrani, S.A.; Halwani, R.; Tleyjeh, I.M. Combination of (interferon beta-1b, lopinavir/ ritonavir and ribavirin) versus favipiravir in hospitalized patients with non-critical COVID-19: A cohort study. PLoS ONE 2021, 16, 1–16. [Google Scholar] [CrossRef]
- Kumar, S.; Tripathi, T. One year update on the COVID-19 pandemic: Where are we now? Acta Trop. 2021, 214, 105778. [Google Scholar]
- Alexaki, V.I.; Henneicke, H. The Role of Glucocorticoids in the Management of COVID-19. Horm. Metab. Res. 2021, 53, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Gallelli, L.; Pelaia, G.; Fratto, D.; Mutoi, V.; Falcone, D.; Vatrella, A.; Curto, L.S.; Renda, T.; Busceti, M.T.; Liberto, M.C.I.; et al. Effects of budesonide on P38 MAPK activation, apoptosis and IL-8 secretion, induced by TNF-alpha and Haemophilus influenzae in human bronchial epithelial cells. Int. J. Immunopathol. Pharmacol. 2010, 23, 471–479. [Google Scholar] [CrossRef]
- Pelaia, G.; Gallelli, L.; D’Agostino, B.; Vatrella, A.; Cuda, G.; Fratto, D.; Renda, T.; Galderisi, U.; Piegari, E.; Crimi, N.; et al. Effects of TGF-b and Glucocorticoids on Map Kinase Phosphorylation, IL-6/IL-11 Secretion and Cell Proliferation in Primary Cultures of Human Lung Fibroblasts. J. Cell. Physiol. 2007, 210, 489–497. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Murthy, S.; Diaz, J.V.; Slutsky, A.S.; Villar, J.; Angus, D.C.; Annane, D.; Azevedo, L.C.P.; Berwanger, O.; Cavalcanti, A.B.; et al. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19. JAMA 2020, 324, 1330. [Google Scholar] [CrossRef]
- Maláska, J.; Stašek, J.; Duška, F.; Balík, M.; Máca, J.; Hruda, J.; Vymazal, T.; Klementová, O.; Zatloukal, J.; Gabrhelík, T.; et al. Effect of dexamethasone in patients with ARDS and COVID-19—Prospective, multi-centre, open-label, parallel-group, randomised controlled trial (REMED trial): A structured summary of a study protocol for a randomised controlled trial. Trials 2021, 22, 1–4. [Google Scholar] [CrossRef]
- Rogliani, P.; Lauro, D.; Di Daniele, N.; Chetta, A.; Calzetta, L. Reduced risk of COVID-19 hospitalization in asthmatic and COPD patients: A benefit of inhaled corticosteroids? Expert Rev. Respir. Med. 2021, 15, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, S.; Kawase, M.; Nao, N.; Shirato, K.; Ujike, M.; Kamitani, W.; Shimojima, M.; Fukushi, S. The Inhaled Steroid Ciclesonide Blocks SARS-CoV-2 RNA Replication by Targeting the Viral Replication-Transcription Complex in Cultured Cells. J. Virol. 2020, 95, e01648-20. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.C.; Sajuthi, S.; Deford, P.; Christenson, S.; Rios, C.L.; Montgomery, M.T.; Woodruff, P.G.; Mauger, D.T.; Erzurum, S.C.; Johansson, M.W.; et al. COVID-19–related Genes in Sputum Cells in Asthma. Relationship to Demographic Features and Corticosteroids. Am. J. Respir. Crit. Care Med. 2020, 202, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, S.; Nicolau, D.V.; Langford, B.; Mahdi, M.; Jeffers, H.; Mwasuku, C.; Krassowska, K.; Fox, R.; Binnian, I.; Glover, V.; et al. Inhaled budesonide in the treatment of early COVID-19 (STOIC): A phase 2, open-label, randomised controlled trial. Lancet Respir. Med. 2021, 763–772. [Google Scholar] [CrossRef]
- Laurence Brunton, R.H.D.; Goodman & Gillman’s. The Pharmacological Basis of Therapy; 13th ed.; 2018. Available online: https://accessmedicine.mhmedical.com/book.aspx?bookID=2189#165936881 (accessed on 12 August 2021).
- Mohebbi, N.; Talebi, A.; Moghadamnia, M.; Taloki, Z.N.; Shakiba, A. Drug interactions of psychiatric and COVID-19 medications. Basic Clin. Neurosci. 2020, 11, 185–200. [Google Scholar] [CrossRef]
- Plasencia-García, B.O.; Rodríguez-Menéndez, G.; Rico-Rangel, M.I.; Rubio-García, A.; Torelló-Iserte, J.; Crespo-Facorro, B. Drug-drug interactions between COVID-19 treatments and antipsychotics drugs: Integrated evidence from 4 databases and a systematic review. Psychopharmacology 2021, 238, 329–340. [Google Scholar] [CrossRef]
- Zhou, S.-F. Drugs Behave as Substrates, Inhibitors and Inducers of Human Cytochrome P450 3A4. Curr. Drug Metab. 2008, 9, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.B. Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab. Rev. 2002, 34, 47–54. [Google Scholar] [CrossRef]
- Pengo, V.; Crippa, L.; Falanga, A.; Finazzi, G.; Marongiu, F.; Palareti, G.; Poli, D.; Testa, S.; Tiraferri, E.; Tosetto, A.; et al. Questions and answers on the use of dabigatran and perpectives on the use of other new oral anticoagulants in patients with atrial fibrillation; a consensus document of the Italian federation of thrombosis centers (FCSA). Thromb. Haemost. 2011, 106, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Hakkola, J.; Hukkanen, J.; Turpeinen, M.; Pelkonen, O. Inhibition and Induction of CYP Enzymes in Humans: An Update; Springer: Berlin/Heidelberg, Germany, 2020; Volume 94, ISBN 0123456789. [Google Scholar]
- European Medicines Agency. Advagraf—Summary of Product Characteristics; European Medicines Agency: Amsterdam, The Netherlands, 2020. [Google Scholar]
- European Medicines Agency. Rapamune—Summary of Product Characteristics; European Medicines Agency: Amsterdam, The Netherlands, 2021. [Google Scholar]
- European Medicines Agency. Afinitor—Summary of Product Characteristics; European Medicines Agency: Amsterdam, The Netherlands, 2020. [Google Scholar]
- AIFA. Riassunto delle Caratterisiche del Prodotto—Ciqorin; AIFA. 2016. Available online: https://farmaci.agenziafarmaco.gov.it/aifa/servlet/PdfDownloadServlet?pdfFileName=footer_000813_042787_RCP.pdf&sys=m0b1l3 (accessed on 12 August 2021).
- De Rossi, N.; Scarpazza, C.; Filippini, C.; Cordioli, C.; Rasia, S.; Mancinelli, C.R.; Rizzoni, D.; Romanelli, G.; Cossi, S.; Vettoretto, N.; et al. Early use of low dose tocilizumab in patients with COVID-19: A retrospective cohort study with a complete follow-up. EClinicalMedicine 2020, 25, 100459. [Google Scholar] [CrossRef]
- Salvarani, C.; Dolci, G.; Massari, M.; Merlo, D.F.; Cavuto, S.; Savoldi, L.; Bruzzi, P.; Boni, F.; Braglia, L.; Turrà, C.; et al. Effect of Tocilizumab vs Standard Care on Clinical Worsening in Patients Hospitalized with COVID-19 Pneumonia. JAMA Intern. Med. 2021, 181, 24. [Google Scholar] [CrossRef] [PubMed]
- Lier, A.J.; Tuan, J.J.; Davis, M.W.; Paulson, N.; McManus, D.; Campbell, S.; Peaper, D.R.; Topal, J.E. Case Report: Disseminated Strongyloidiasis in a Patient with COVID-19. Am. J. Trop. Med. Hyg. 2020, 103, 1590–1592. [Google Scholar] [CrossRef] [PubMed]
- Marchese, V.; Crosato, V.; Gulletta, M.; Castelnuovo, F.; Cristini, G.; Matteelli, A.; Castelli, F. Strongyloides infection manifested during immunosuppressive therapy for SARS-CoV-2 pneumonia. Infection 2020, 49, 539–542. [Google Scholar] [CrossRef]
- European Medicines Agency RoActemra-Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/roactemra (accessed on 12 August 2021).
- Richardson, P.; Griffin, I.; Tucker, C.; Smith, D.; Oechsle, O.; Phelan, A.; Rawling, M.; Savory, E.; Stebbing, J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020, 395, e30–e31. [Google Scholar] [CrossRef] [Green Version]
- Rosen, D.A.; Seki, S.M.; Fernández-Castañeda, A.; Beiter, R.M.; Eccles, J.D.; Woodfolk, J.A.; Gaultier, A. Modulation of the sigma-1 receptor–IRE1 pathway is beneficial in preclinical models of inflammation and sepsis. Sci. Transl. Med. 2019, 11, eaau5266. [Google Scholar] [CrossRef]
- Rafiee, L.; Hajhashemi, V.; Javanmard, S.H. Fluvoxamine inhibits some inflammatory genes expression in LPS/stimulated human endothelial cells, U937 macrophages, and carrageenan-induced paw edema in rat. Iran. J. Basic Med. Sci. 2016, 19, 977–984. [Google Scholar]
- Misawa, T.; Takahama, M.; Kozaki, T.; Lee, H.; Zou, J.; Saitoh, T.; Akira, S. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat. Immunol. 2013, 14, 454–460. [Google Scholar] [CrossRef]
- Deb, P.; Molla, M.M.A.; Saif-Ur-Rahman, K.M. An update to monoclonal antibody as therapeutic option against COVID-19. Biosaf. Heal. 2021, 3, 87–91. [Google Scholar] [CrossRef]
- Wang, P.; Wang, M.; Yu, J.; Cerutti, G.; Nair, M.S.; Huang, Y.; Kwong, P.D.; Shapiro, L.; Ho, D.D. Increased Resistance of SARS-CoV-2 Variant P.1 to Antibody Neutralization. bioRxiv Prepr. Serv. Biol. 2021, 29, 747–751.e4. [Google Scholar] [CrossRef]
- Stratton, C.W.; Tang, Y.W.; Lu, H. Pathogenesis-directed therapy of 2019 novel coronavirus disease. J. Med. Virol. 2021, 93, 1320–1342. [Google Scholar] [CrossRef]
- Takahashi, T.; Ellingson, M.K.; Wong, P.; Israelow, B.; Lucas, C.; Klein, J.; Silva, J.; Mao, T.; Oh, J.E.; Lu, P.; et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 2020, 588, 315–320. [Google Scholar] [CrossRef]
- Price-Haywood, E.G.; Burton, J.; Fort, D.; Seoane, L. Hospitalization and Mortality among Black Patients and White Patients with COVID-19. N. Engl. J. Med. 2020, 382, 2534–2543. [Google Scholar] [CrossRef]
- Millett, G.A.; Jones, A.T.; Benkeser, D.; Baral, S.; Mercer, L.; Beyrer, C.; Honermann, B.; Lankiewicz, E.; Mena, L.; Crowley, J.S.; et al. Assessing differential impacts of COVID-19 on black communities. Ann. Epidemiol. 2020, 47, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Nédélec, Y.; Sanz, J.; Baharian, G.; Szpiech, Z.A.; Pacis, A.; Dumaine, A.; Grenier, J.C.; Freiman, A.; Sams, A.J.; Hebert, S.; et al. Genetic Ancestry and Natural Selection Drive Population Differences in Immune Responses to Pathogens. Cell 2016, 167, 657–669.e21. [Google Scholar] [CrossRef] [Green Version]
- Godfred-cato, S.; Bryant, B.; Leung, J.; Oster, M.E.; Conklin, L.; Abrams, J. COVID-19—Associated Multisystem Inflammatory Syndrome in Children. MMWR Morb Mortal Wkly Rep 2020, 69, 1074–1080. [Google Scholar] [CrossRef] [PubMed]
- Roden, D.M.; Harrington, R.A.; Poppas, A.; Russo, A.M. Considerations for drug interactions on QTc interval in exploratory COVID-19 treatment. Circulation 2020, 141, e906–e907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opal, S.M.; van der Poll, T. Endothelial barrier dysfunction in septic shock. J. Intern. Med. 2015, 277, 277–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, J.A.; Lipman, J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit. Care Med. 2009, 37, 840–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narang, K.; Enninga, E.A.L.; Madugodaralalage, G.; Ibirogba, E.R.; Trad, A.T.A.; Elrefaei, A.; Theiler, R.N.; Ruano, R.; Szymanski, L.M.; Chakraborty, R.; et al. SARS-CoV-2 Infection and COVID-19 During Pregnancy: A Multidisciplinary Review. Mayo Clin. Proc. 2020, 95, 1750–1765. [Google Scholar] [CrossRef]
- Fishman, J.A.; Grossi, P.A. Novel Coronavirus-19 (COVID-19) in the immunocompromised transplant recipient: #Flatteningthecurve. Am. J. Transplant. 2020, 20, 1765–1767. [Google Scholar] [CrossRef]
- Weisblum, Y.; Schmidt, F.; Zhang, F.; DaSilva, J.; Poston, D.; Lorenzi, J.C.C.; Muecksch, F.; Rutkowska, M.; Hoffmann, H.H.; Michailidis, E.; et al. Escape from neutralizing antibodies 1 by SARS-CoV-2 spike protein variants. Elife 2020, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Alothaid, H.; Aldughaim, M.S.K.; El Bakkouri, K.; AlMashhadi, S.; Al-Qahtani, A.A. Similarities between the effect of SARS-CoV-2 and HCV on the cellular level, and the possible role of ion channels in COVID19 progression: A review of potential targets for diagnosis and treatment. Channels 2020, 14, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Bafna, K.; Krug, R.M.; Montelione, G.T. Structural Similarity of SARS-CoV2 Mpro and 1 HCV NS3/4A Proteases Suggests New Approaches for Identifying Existing Drugs Useful as COVID-19 Therapeutics. ChemRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Singh, T.U.; Parida, S.; Lingaraju, M.C.; Kesavan, M.; Kumar, D.; Singh, R.K. Drug repurposing approach to fight COVID-19. Pharmacol. Reports 2020, 72, 1479–1508. [Google Scholar] [CrossRef] [PubMed]
- Asai, A.; Konno, M.; Ozaki, M.; Otsuka, C.; Vecchione, A.; Arai, T.; Kitagawa, T.; Ofusa, K.; Yabumoto, M.; Hirotsu, T.; et al. COVID-19 drug discovery using intensive approaches. Int. J. Mol. Sci. 2020, 21, 2839. [Google Scholar] [CrossRef] [Green Version]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Gallelli, L.; Zhang, L.; Wang, T.; Fu, F. Severe Acute Lung Injury Related to COVID-19 Infection: A Review and the Possible Role for Escin. J. Clin. Pharmacol. 2020, 60, 815–825. [Google Scholar] [CrossRef]
- Sengupta, V.; Sengupta, S.; Lazo, A.; Woods, P.; Nolan, A.; Bremer, N. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells as Treatment for Severe COVID-19. Stem Cells Dev. 2020, 29, 747–754. [Google Scholar] [CrossRef]
- Chen, J.; Huang, R.; Nie, Y.; Wen, X.; Wu, Y. Human Monoclonal Antibodies: On the Menu of Targeted Therapeutics against COVID-19. Virol. Sin. 2020, 35, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, W.; Yu, X.; Wu, M.; Reichert, J.M.; Ho, M. COVID-19 antibody therapeutics tracker: A global online database of antibody therapeutics for the prevention and treatment of COVID-19. Antib. Ther. 2020, 3, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Baughn, L.B.; Sharma, N.; Elhaik, E.; Sekulic, A.; Bryce, A.H.; Fonseca, R. Targeting TMPRSS2 in SARS-CoV-2 Infection. Mayo Clin. Proc. 2020, 95, 1989–1999. [Google Scholar] [CrossRef]
- Braga, L.; Ali, H.; Secco, I.; Chiavacci, E.; Neves, G.; Goldhill, D.; Penn, R.; Jimenez-Guardeño, J.M.; Ortega-Prieto, A.M.; Bussani, R.; et al. Drugs that inhibit TMEM16 proteins block SARS-CoV-2 Spike-induced syncytia. Nature 2021, 594, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Andersson, U.; Ottestad, W.; Tracey, K.J. Extracellular HMGB1: A therapeutic target in severe pulmonary inflammation including COVID-19? Mol. Med. 2020, 26, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Poulas, K.; Farsalinos, K.; Zanidis, C. Activation of TLR7 and Innate Immunity as an Efficient Method against COVID-19 Pandemic: Imiquimod as a Potential Therapy. Front. Immunol. 2020, 11, 1373. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.; Faustino, M.A.F.; Neves, M.G.P.M.S. Antimicrobial photodynamic therapy in the control of COVID-19. Antibiotics 2020, 9, 320. [Google Scholar] [CrossRef]
Category of Illness | Sign and Symptoms | Dyspnea | NPS | Chest Imaging | SpO2 | PaO2/FiO2 |
---|---|---|---|---|---|---|
asymptomatic | No | No | Negative | Negative | >94% | >300 mmHg |
Mild | cough, fever, fatigue, myalgia, and ageusia | No | Positive | Negative | >94% | >300 mmHg |
Moderate | cough, fever, fatigue, myalgia, and ageusia | No | Positive | Positive, lung infiltrates <50% | >94% | >300 mmHg |
Severe | respiratory rate >30 breaths/min | Yes | Positive | lung infiltrates >50% | <94% | <300 mmHg |
Critical | septic shock, respiratory failure | Yes | Positive | lung infiltrates >50% | <94% | <300 mmHg |
Mechanism(s) of Action | Current Clinical Indications | Dosage Suggested | Route of Administration | References | |
---|---|---|---|---|---|
Bamlanivimab/ etesevimab | Monoclonal antibodies against different epitopes of the SARS-CoV-2 spike protein | Outpatient with mild to moderate disease and high progression risk | Bamlanivimab 700 mg/ etesevimab 1400 mg | Intravenous | [4,15] |
Baricitinib | Inhibition of JAK 1 and JAK 2 activity | Hospitalized patients, in co-administration with remdesivir when CCs cannot be used | 4 mg daily up to 14 days | OS | [4,16,17] |
Casirivimab/ imdevimab | Monoclonal antibodies against different epitopes of the SARS-CoV-2 spike protein | Outpatient with mild to moderate disease and high progression risk | Casirivimab 1200 mg/imdevimab 1200 mg | Intravenous | [4,18] |
Chloroquine or hydroxychloroquine | Inhibition of the fusion mechanism(s) of SARS-CoV-2; immunomodulatory activity | None. In clinical trial only. | Different dosages depending on clinical trial | OS | [4,19,20] |
Dexamethasone | Suppression of inflammatory response mainly inhibiting the activation of NF-κB | Hospitalized patients receiving either IV or oxygen alone | 6 mg daily dose up to 10 days | OS or intravenous | [4,21,22] |
Favipiravir | RNA polymerase inhibition | None. In clinical trial only | 2 doses of 2400 mg to 3000 mg TD followed by 1200 mg to 1800 mg TD | OS or intravenous | [23,24] |
Ivermectin | It docks to the SARS-CoV-2 Spike Receptor binding domain | None. In clinical trial only | One 200 μg/kg dose in addition to usual clinical care; a second dose at day 7 could be administered | OS | [4,25,26,27] |
Lopinavir/ ritonavir | HIV type 1 aspartate protease inhibitors | None. In clinical trial only | Lopinavir 400 mg/ritonavir 100 mg TD up to 14 days | OS | [4,28,29,30,31] |
Remdesivir | RNA polymerase inhibition | Hospitalized adult and pediatric patients aged ≥12 years and weighing ≥40 kg * | Single loading dose of 200 mg followed by 100 mg OD up to 10 days | Intravenous | [4,13,14,32,33,34] |
Tocilizumab | Monoclonal antibody against the IL-6 receptor | In combination with dexamethasone in hospitalized patients with rapid respiratory decompensation | Single dose of 8 mg/kg, up to 800 mg | Intravenous | [4,35,36,37] |
Oral Bioavailability | Time to Peak Concentration | Serum Half-Life (t1/2) | Protein Binding | Transporter Proteins | Metabolism | Metabolites | |
Baricitinib | 79% | 0.5–3.0 h | 12.5–12.9 h | ~50% | OAT3, P-gp, BCRP and MATE2-K | <10% through oxidation (CYP3A4) | 4 minor oxidative metabolites (3 in urine; 1 in feces) |
Chloroquine/ hydroxychloroquine | 79% (HCQ) | 3–4 h (HCQ, OS) | 30–50 days | ~50% | - | CYP 2D6, 3A4, 3A5 and 2C8 | Desethylhydroxychloroquine, desethylchloroquine and bidesethylchloroquine |
Dexamethasone | 61–86% | 3 h (OS) 5 min (IV) | 3.5–4.5 h (biological half-life 36–54 h) | 77–80% | P-gp | CYP3A4 | Hydroxy-6-dexamethasone and dihydro-20-dexamethasone |
Favipiravir | 97.6% | 2 h | 2–5.5 h | 54% | - | Mainly aldehyde oxidase; partially xanthine oxidase | T-705M1 (urine, inactive) T-705-RTP (activated) |
Ivermectin | Moderately well absorbed. Improved absorption with high fat meal. | 4.4 h | ~18 h | 93.2% | P-gp | CYP3A4 | 3″-O-demethyl ivermectin and 4a-hydroxy ivermectine (main metabolites) |
Lopinavir/ ritonavir | Not been established | 4 h | 5–6 h | 98–99% | - | Lopinavir: CYP3A4; ritonavir: both CYP3A and CYP2D6 | Lopinavir (main metabolites): 4-oxo and 4-hydroxymetabolite epimeric pair |
Remdesivir | - | At end of infusion | 1 h | 88% | OATP1B1 and P-gp | Plasma esterases, CYP2C8, 2D6 and 3A4 | GS-443902 (active), GS-704277 and GS-441524 |
Tocilizumab | - | At end of infusion | 151 ± 59 h (6.3 days) § | 95% | - | - | None |
Enzymes Inductor/ Inhibitor | Elimination | Dose Changes in Hepatic Disease | Dose Changes in Renal Disease | References | |||
Baricitinib | OCT1 inhibitor (no clinically significant interactions) | 75% urine 20% feces | Mild or moderate hepatic impairment: no dose adjustment Severe hepatic impairment: not recommended. | Creatinine clearance 30–60 mL/min: 2 mg OD Creatinine clearance < 30 mL/min: not recommended | [16] | ||
Chloroquine/ hydroxychloroquine | CYP 2D6 and P-gp inhibitor | 20–25% urine | Advanced liver disease (CPT C): a loading dose with a reduction of 50% for maintenance dosing and no more than 400 mg per day | AIFA: dosage adjustment is needed FDA: no dosage adjustment | [4,38,39,40,41] | ||
Dexamethasone | CYP3A4 and P-gp moderate inducer | 65% urine | Use with caution | Use with caution * | [4,38,39,42] | ||
Favipiravir | None described, partial data | Urine | Caution needed Dose reduction in CPT C patients | Caution needed Lack of studies in patients with eGFR <30 mL/min | [23,24,43] | ||
Ivermectin | None described, lack of studies | Mainly in feces (<1% urine) | Caution in severe hepatic disease | No dose adjustment | [4,44,45,46] | ||
Lopinavir/ritonavir | CYP2C9 and CYP2C19 inductor° CYP3A4 and 2D6, P-gp, BCRP and OATP1B1 inhibition | 10.4 ± 2.3% urine 82.6 ± 2.5% feces | Mild to moderate hepatic impairment: no dosage adjustments are needed Severe hepatic impairment: not recommended (no data available) | No dose adjustment | [28,47] | ||
Remdesivir | CYP3A4 inhibitor. Temporary inhibition of CYP2B6, 2C8, 2C9 and 2D6 in the first day of administration. In vitro, CYP1A2 and CYP3A induction, OATP1B1 and OATP1B3 inhibition | 74% urine 18% feces | NIH/FDA: discontinue if ALT levels increase to >10 times or if there is any increase in ALT levels associated with liver symptoms or alteration of biomarkers EMA: discontinue (and not initiate) if ALT is ≥5 times the upper limit of normal levels and there are signs of liver inflammation or other hepatic biomarkers alterations | Not approved in patients with eGFR <30 mL/min ** | [4,13,14] | ||
Tocilizumab | Normalize the IL-6 mediated reduction in the expression CYP1A2, 2C9, 2C19 and 3A4 | Mainly urine | Not been studied in patients with hepatic impairment (no dose recommendations can be made) | Mild or moderate renal impairment: no dose adjustment is required Severe renal impairment: monitor closely | [48] |
Effect of the Combination | Mechanism of Interaction | Selection of Drugs Affected | Clinical Comment | |
---|---|---|---|---|
CYP3A4 substrates | Serum level↓by dexamethasone § [42] Serum level↑by remdesivir [4,13,14] and lopinavir/ritonavir [28,47] * | CYP3A4 induction CYP3A4 inhibition | Alfuzosin, bisoprolol, some statins *, gliptins, ranolazine, antiarrhythmic drugs (amiodarone, dronedarone), clarithromycin, rivaroxaban, azoles, some antihistamines, some opioids [63] some antipsychotics, antidepressants, carbamazepine, lopinavir/ritonavir, ivermectin, calcineurin inhibitors, mTOR inhibitors | Risk for reduced efficacy Risk for adverse events, potential risk of serotonin syndrome Possible interactions in transplant recipients with COVID-19 [64]. |
CYP2D6 substrates | Serum level↑by chloroquine and hydroxychloroquine [4,40,57] | CYP2D6 inhibition | Beta-blockers (i.e., metoprolol, bisoprolol, carvedilol), calcium antagonists, antidepressants, antipsychotics, codeine, antiarrhythmic drugs (often class I) | Risk for adverse events, potential risk of serotonin syndrome; co-administered cautiously. The coadministration of protease inhibitors and class IC antiarrhythmics is not recommended, whereas in the other cases caution is needed [12,65] |
CYP2C9 and CYP2C19 substrates | Serum level↓by lopinavir/ritonavir [28,47] | CYP2C9 and CYP2C19 induction | Phenytoin, sulphonylureas | Risk for reduced efficacy. |
CYP1A2, 2C9, 2C19 and 3A4 substrates | Serum level↓ by tocilizumab [48,66] | Normalization of the IL-6 mediated reduction in the enzymes’ expression | methylprednisolone, dexamethasone, (with possible oral glucocorticoid withdrawal syndrome), atorvastatin, calcium channel blockers, theophylline, warfarin, phenprocoumon, phenytoin, ciclosporin, benzodiazepines, some anticancer drug (i.e., vincristine), antipsychotics | Dosage increases may be needed accordingly |
P-gp substrates | Serum level↑by chloroquine, hydroxychloroquine [4,39] and lopinavir/ritonavir [28,47] | P-gp inhibition | Protease inhibitors, digoxin, antitumor drugs, calcineurin inhibitors, mTOR inhibitors | Risk for adverse events. |
Serum level↓by dexamethasone [42] | P-gp induction | Risk for reduced efficacy | ||
UGT substrates | Serum level↓by ritonavir | UGT induction [65,67] | Canagliflozin | Risk for reduced efficacy |
Selection of Drugs | Mechanism of Interaction | Effect of the Combination | Clinical Comment |
---|---|---|---|
Analgesics | |||
Ibuprofen or diclofenac | OAT3 inhibition [16] | ↑of baricitinib | No clinically significant |
Antibiotics | |||
Macrolides [80] (e.g., clarithromycin, erythromycin) | CYP3A4 inhibition | Potential ↑of lopinavir/ritonavir [28,47], remdesivir [13,14], hydroxychloroquine [40], ivermectin [46], corticosteroids | Risk for adverse events. The combination should be avoided unless the benefit outweighs the increased risk of systemic corticosteroid side-effects |
Anticancer drugs * | |||
Crizotinib, lapatinib [65] and others | CYP3A4 inhibition | ↑of lopinavir/ritonavir, remdesivir, hydroxychloroquine, ivermectin, corticosteroids | Risk for adverse events Observe the patient In general, remdesivir interactions need further analysis [13]. Cytotoxic therapies should be stopped, even for outpatients, and they are contraindicated for patients in intensive care unit. The combination of the immunosuppression mediated by anticancer and COVID-19 treatment can be also another important issue [4] |
Dabrafenib, enzalutamide, vemurafenib [65] and others | CYP3A4 induction | ↓ of lopinavir/ritonavir, remdesivir, hydroxychloroquine, ivermectin, corticosteroids | Risk for reduced efficacy Observe the patient |
Antidepressants [81,82] | |||
Fluoxetine, fluvoxamine | CYP3A4 inhibitors | ↑oflopinavir/ritonavir, hydroxychloroquine remdesivir, ivermectin, corticosteroids | Risk for adverse events |
Fluoxetine, paroxetine, citalopram, escitalopram, fluvoxamine, sertraline, duloxetine, bupropion | CYP2D6 inhibitors | ↑ritonavir, hydroxychloroquine [40], remdesivir | Risk for adverse events |
Antidiabetics | |||
Glitazones | CYP3A4 inhibitors | Potential ↑oflopinavir/ritonavir, hydroxychloroquine remdesivir, ivermectin, corticosteroids | Rosiglitazone has a stronger effect than pioglitazone [83] |
Antifungals (azoles) | |||
Ketoconazole, itraconazole, fluconazole [83] | CYP3A4 inhibition | Potential ↑ of lopinavir/ritonavir, hydroxychloroquine remdesivir, ivermectin, corticosteroids | Risk for adverse events |
P-gp Inhibition [84,85] | Potential ↑ of remdesivir, baricitinib | Risk for adverse events | |
Antipsychotics [81,82] | |||
Chlorpromazine, thioridazine, perphenazine | CYP2D6 inhibitors | Potential ↑of ritonavir, hydroxychloroquine, remdesivir | Risk for adverse events |
Phenotiazin | P-gp inhibition | Potential ↑ of remdesivir, baricitinib | Risk for adverse events |
Anti-seizure medications | |||
Carbamazepine and phenytoin | CYP3A4 induction | Potential ↓of lopinavir/ritonavir, ivermectin, hydroxychloroquine remdesivir, corticosteroids | Risk for reduced efficacy Remdesivir interactions need further analysis |
Anti-tuberculosis drugs | |||
Rifampicin | CYP3A4 induction | Potential ↓of lopinavir/ritonavir levels, ivermectin levels, hydroxychloroquine remdesivir, corticosteroids | Risk for reduced efficacy |
P-gp induction | Potential ↓ of remdesivir, baricitinib | Risk for reduced efficacy | |
Cardiovascular drugs | |||
Amiodarone, clopidogrel, calcium channel blockers (diltiazem, verapamil), ticlopidine [86] | CYP3A4 inhibition | Potential ↑ of remdesivir, lopinavir/ritonavir, hydroxychloroquine ivermectin, corticosteroids | Risk for adverse events. Remdesivir interactions need further analysis |
Propafenone | CYP2D6 inhibition | Potential ↑ of ritonavir, hydroxychloroquine, remdesivir | Risk for adverse events |
HIV protease inhibitors | CYP3A4 inhibition | Potential ↑of remdesivir, lopinavir/ritonavir, hydroxychloroquine ivermectin, corticosteroids | Risk for adverse events |
Lopinavir/ritonavir | P-gp inhibition | Potential ↑ of remdesivir, baricitinib | Risk for adverse events |
Immunosuppressants | |||
Dexamethasone [42] | CYP3A4 induction | Potential ↓ of remdesivir, lopinavir/ritonavir, hydroxychloroquine, ivermectin | Interaction between remdesivir and dexamethasone seems not clinically relevant [13] |
P-gp induction | Potential ↓ of remdesivir, baricitinib | Risk for reduced efficacy | |
Hydroxychloroquine | CYP2D6 inhibition | Potential ↑of ritonavir, hydroxychloroquine, remdesivir | Risk for adverse events. CQ and HCQ seem to interfere with remdesivir activity |
Tacrolimus, everolimus, ciclosporin, sirolimus [83,87,88,89] | CYP3A4 inhibition | Potential ↑of remdesivir, lopinavir/ritonavir, hydroxychloroquine ivermectin, corticosteroids | Risk for adverse events |
Ciclosporin [90] | P-gp inhibition | Potential ↑of remdesivir, baricitinib | Risk for adverse events |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcianò, G.; Roberti, R.; Palleria, C.; Mirra, D.; Rania, V.; Casarella, A.; De Sarro, G.; Gallelli, L. SARS-CoV-2 Treatment: Current Therapeutic Options and the Pursuit of Tailored Therapy. Appl. Sci. 2021, 11, 7457. https://doi.org/10.3390/app11167457
Marcianò G, Roberti R, Palleria C, Mirra D, Rania V, Casarella A, De Sarro G, Gallelli L. SARS-CoV-2 Treatment: Current Therapeutic Options and the Pursuit of Tailored Therapy. Applied Sciences. 2021; 11(16):7457. https://doi.org/10.3390/app11167457
Chicago/Turabian StyleMarcianò, Gianmarco, Roberta Roberti, Caterina Palleria, Davida Mirra, Vincenzo Rania, Alessandro Casarella, Giovambattista De Sarro, and Luca Gallelli. 2021. "SARS-CoV-2 Treatment: Current Therapeutic Options and the Pursuit of Tailored Therapy" Applied Sciences 11, no. 16: 7457. https://doi.org/10.3390/app11167457
APA StyleMarcianò, G., Roberti, R., Palleria, C., Mirra, D., Rania, V., Casarella, A., De Sarro, G., & Gallelli, L. (2021). SARS-CoV-2 Treatment: Current Therapeutic Options and the Pursuit of Tailored Therapy. Applied Sciences, 11(16), 7457. https://doi.org/10.3390/app11167457