Model-Predictive-Control-Based Time-Optimal Trajectory Planning of the Distributed Actuation Mechanism Augmented by the Maximum Performance Evaluation
Abstract
:1. Introduction
2. Maximum Performance Evaluation
2.1. Optimization Formulation
2.2. Numerical Results
3. Time-Optimal Trajectory Planning Based on the MPE and MPC
3.1. Approximation of the MPE Results
3.2. Problem Formulation
3.3. Numerical Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reiter, A.; Muller, A.; Gattringer, H. On Higher Order Inverse Kinematics Methods in Time-Optimal Trajectory Planning for Kinematically Redundant Manipulators. IEEE Trans. Ind. Inform. 2018, 14, 1681–1690. [Google Scholar] [CrossRef]
- Fang, Y.; Hu, J.; Liu, W.; Shao, Q.; Qi, J.; Peng, Y. Smooth and time-optimal S-curve trajectory planning for automated robots and machines. Mech. Mach. Theory 2019, 137, 127–153. [Google Scholar] [CrossRef]
- Benotsmane, R.; Dudás, L.; Kovács, G. Trajectory optimization of industrial robot arms using a newly elaborated “whip-lashing” method. Appl. Sci. 2020, 10, 8666. [Google Scholar] [CrossRef]
- Hansen, C.; Öltjen, J.; Meike, D.; Ortmaier, T. Enhanced approach for energy-efficient trajectory generation of industrial robots. In Proceedings of the 2012 IEEE International Conference on Automation Science and Engineering (CASE), Seoul, Korea, 20–24 August 2012; pp. 1–7. [Google Scholar] [CrossRef]
- Pellicciari, M.; Berselli, G.; Leali, F.; Vergnano, A. A method for reducing the energy consumption of pick-and-place industrial robots. Mechatronics 2013, 23, 326–334. [Google Scholar] [CrossRef]
- Lee, G.; Park, S.; Lee, D.; Park, F.C.; Jeong, J.I.; Kim, J. Minimizing Energy Consumption of Parallel Mechanisms via Redundant Actuation. IEEE/ASME Trans. Mechatron. 2015, 20, 2805–2812. [Google Scholar] [CrossRef]
- Carabin, G.; Scalera, L. On the Trajectory Planning for Energy Efficiency in Industrial Robotic Systems. Robotics 2020, 9, 89. [Google Scholar] [CrossRef]
- Tringali, A.; Cocuzza, S. Finite-Horizon Kinetic Energy Optimization of a Redundant Space Manipulator. Appl. Sci. 2021, 11, 2346. [Google Scholar] [CrossRef]
- Trigatti, G.; Boscariol, P.; Scalera, L.; Pillan, D.; Gasparetto, A. A Look-Ahead Trajectory Planning Algorithm for Spray Painting Robots with Non-spherical Wrists. In Mechanisms and Machine Science; Springer: Cham, Switzerland, 2019; Volume 66, pp. 235–242. [Google Scholar]
- Boudreau, R.; Nokleby, S. Force optimization of kinematically-redundant planar parallel manipulators following a desired trajectory. Mech. Mach. Theory 2012, 56, 138–155. [Google Scholar] [CrossRef]
- Al Khudir, K.; Halvorsen, G.; Lanari, L.; De Luca, A. Stable Torque Optimization for Redundant Robots Using a Short Preview. IEEE Robot. Autom. Lett. 2019, 4, 2046–2053. [Google Scholar] [CrossRef] [Green Version]
- Kot, T.; Bobovský, Z.; Vysocký, A.; Krys, V.; Šafařík, J.; Ružarovský, R. Method for Robot Manipulator Joint Wear Reduction by Finding the Optimal Robot Placement in a Robotic Cell. Appl. Sci. 2021, 11, 5398. [Google Scholar] [CrossRef]
- Rosmann, C.; Makarow, A.; Hoffmann, F.; Bertram, T. Time-Optimal nonlinear model predictive control with minimal control interventions. In Proceedings of the 2017 IEEE Conference on Control Technology and Applications (CCTA), Maui, HI, USA, 27–30 August 2017; Volume 2017-Janua, pp. 19–24. [Google Scholar]
- Van Den Broeck, L.; Diehl, M.; Swevers, J. A model predictive control approach for time optimal point-to-point motion control. Mechatronics 2011, 21, 1203–1212. [Google Scholar] [CrossRef]
- Shyh Chyan, G.; Ponnambalam, S.G. Obstacle avoidance control of redundant robots using variants of particle swarm optimization. Robot. Comput. Integr. Manuf. 2011, 28, 147–153. [Google Scholar] [CrossRef]
- Liu, J.; Tong, Y.; Ju, Z.; Liu, Y. Novel method of obstacle avoidance planning for redundant sliding manipulators. IEEE Access 2020, 8, 78608–78621. [Google Scholar] [CrossRef]
- Atawnih, A.; Papageorgiou, D.; Doulgeri, Z. Kinematic control of redundant robots with guaranteed joint limit avoidance. Rob. Auton. Syst. 2016, 79, 122–131. [Google Scholar] [CrossRef]
- Faroni, M.; Beschi, M.; Pedrocchi, N. Inverse Kinematics of Redundant Manipulators with Dynamic Bounds on Joint Movements. IEEE Robot. Autom. Lett. 2020, 5, 6435–6442. [Google Scholar] [CrossRef]
- Wiedmeyer, W.; Altoe, P.; Auberle, J.; Ledermann, C.; Kroger, T. A Real-Time-Capable Closed-Form Multi-Objective Redundancy Resolution Scheme for Seven-DoF Serial Manipulators. IEEE Robot. Autom. Lett. 2021, 6, 431–438. [Google Scholar] [CrossRef]
- Woolfrey, J.; Lu, W.; Liu, D. A Control Method for Joint Torque Minimization of Redundant Manipulators Handling Large External Forces. J. Intell. Robot. Syst. Theory Appl. 2019, 96, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Chang, Q.; Luo, X.; Qiao, Z.; Li, Q. Design and motion planning of a biped climbing robot with redundant manipulator. Appl. Sci. 2019, 9, 3009. [Google Scholar] [CrossRef] [Green Version]
- Young June Shin; Kyung-Soo Kim Distributed-Actuation Mechanism for a Finger-Type Manipulator: Theory and Experiments. IEEE Trans. Robot. 2010, 26, 569–575. [CrossRef]
- June Shin, Y.; Ju Lee, H.; Kim, K.-S.; Kim, S. Output Force Enhancement of Finger-type Manipulator by Adopting Brushless DC Motors for Sliding Actuation. J. Mech. Eng. Autom. 2012, 2, 85–90. [Google Scholar] [CrossRef]
- Kim, J.H.; Jang, I.G. Optimization-Based Investigation of Bioinspired Variable Gearing of the Distributed Actuation Mechanism to Maximize Velocity and Force. IEEE Robot. Autom. Lett. 2020, 5, 6326–6333. [Google Scholar] [CrossRef]
- Kim, J.H.; Shin, Y.J.; Jang, I.G. Evaluating the Maximum Directional Kinematic Capability of a Redundant Manipulator Based on Allowable Velocity and Force. IEEE Access 2021, 9, 88085–88097. [Google Scholar] [CrossRef]
- Branch, M.A.; Grace, A. Optimization Toolbox: For Use with MATLAB: User’s Guide: Version 1; Math Works: Natick, MA, USA, 1998. [Google Scholar]
- Bemporad, A.; Morari, M.; Ricker, N.L. Model predictive control toolbox. In User’s Guid. Version; Math Works: Natick, MA, USA, 2004; Volume 2. [Google Scholar]
DAM-3R | JAM-3R | ||
---|---|---|---|
Motor | Model | PGM12-1230 | DCX 16 S |
ω0 [rpm] | 12,500 | 6340 | |
τs [mNm] | 3.12 | 12.5 | |
ω–τ area [W] | 2.04 | 4.15 | |
Weight [g] | 13 | 26 |
Design Variables | Joint 1 | Joint 2 | Joint 3 | |||
Lower Bound | Upper Bound | Lower Bound | Upper Bound | Lower Bound | Upper Bound | |
θ1 [°] | θ1(l) | θ1(u) | θ2(l) | θ2(u) | θ3(l) | θ3(u) |
sj [mm] | 37.0 | 77.0 | 37.0 | 77.0 | 37.0 | 77.0 |
ṡj [mm/s] | −1.8 | 7.1 | −7.1 | 7.1 | −7.1 | 7.1 |
ṡjb [mm/s] | −1.8 | 7.1 | −7.1 | 7.1 | −7.1 | 7.1 |
Design Constants | Joint 1 | Joint 2 | Joint 3 | |||
Lj [mm] | 114.0 | 114.0 | 129.0 | |||
cj [mm] | 80.0 | 80.0 | 80.0 | |||
Fmax [N] | 195.9 | 55.8 | 55.8 | |||
ṡmax [mm/s] | 1.8 | 7.1 | 7.1 | |||
M | 16 |
Design Variables | Joint 1 | Joint 2 | Joint 3 | |||
Lower Bound | Upper Bound | Lower Bound | Upper Bound | Lower Bound | Upper Bound | |
θ1 [°] | θ1(l) | θ1(u) | θ2(l) | θ2(u) | θ3(l) | θ3(u) |
j [°/s] | −3.3 | 3.3 | −13.2 | 13.2 | −13.2 | 13.2 |
Design Constants | Joint 1 | Joint 2 | Joint 3 | |||
Lj [mm] | 114.0 | 114.0 | 129.0 | |||
τmax [Nm] | 12.3 | 3.5 | 3.5 | |||
max [°/s] | 3.3 | 13.2 | 13.2 | |||
M | 16 |
JAM-3R | Joint 1 | Joint 2 | Joint 3 | Total | |||
---|---|---|---|---|---|---|---|
295.6 | 265.9 | 13.9 | 575.3 | ||||
DAM-3R | s1 | s1b | s2 | s2b | s3 | s3b | Total |
72.9 | 103.5 | 80.6 | 53.0 | 1.1 | 5.4 | 316.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.H.; Choi, K.; Jang, I.G. Model-Predictive-Control-Based Time-Optimal Trajectory Planning of the Distributed Actuation Mechanism Augmented by the Maximum Performance Evaluation. Appl. Sci. 2021, 11, 7513. https://doi.org/10.3390/app11167513
Kim JH, Choi K, Jang IG. Model-Predictive-Control-Based Time-Optimal Trajectory Planning of the Distributed Actuation Mechanism Augmented by the Maximum Performance Evaluation. Applied Sciences. 2021; 11(16):7513. https://doi.org/10.3390/app11167513
Chicago/Turabian StyleKim, Jong Ho, Kyunghwan Choi, and In Gwun Jang. 2021. "Model-Predictive-Control-Based Time-Optimal Trajectory Planning of the Distributed Actuation Mechanism Augmented by the Maximum Performance Evaluation" Applied Sciences 11, no. 16: 7513. https://doi.org/10.3390/app11167513
APA StyleKim, J. H., Choi, K., & Jang, I. G. (2021). Model-Predictive-Control-Based Time-Optimal Trajectory Planning of the Distributed Actuation Mechanism Augmented by the Maximum Performance Evaluation. Applied Sciences, 11(16), 7513. https://doi.org/10.3390/app11167513