Radiation-Balanced Lasers: History, Status, Potential
Abstract
:1. Introduction
2. Laser Heat Management
3. Theory of Radiation-Balanced Lasing
3.1. Pringsheim’s Cooling
3.2. Athermal Lasing
3.2.1. Athermal Lasing in Ideal Systems
3.2.2. Athermal Lasing in Real Systems
4. Development of Radiation-Balanced Lasers
4.1. Athermal Bulk Lasers
4.2. Athermal Disk Lasers
4.3. Athermal Fibre Lasers
4.3.1. Athermal ZBLAN Fibre Lasers
4.3.2. Athermal Silica Fibre Lasers
4.3.3. Athermal Fibre Lasers with Optically Active Composite Cladding Materials
4.4. Athermal Spherical Microlasers
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keyes, R.J.; Quist, T.M. Injection luminescent pumping of CaF2:U3+ with GaAs diode lasers. Appl. Phys. Lett. 1964, 4, 50–52. [Google Scholar] [CrossRef]
- Streifer, W.; Scifres, D.; Harnagel, G.; Welch, D.; Berger, J.; Sakamoto, M. Advances in laser diode pumps. IEEE J. Quantum Electron. 1988, 24, 883–894. [Google Scholar] [CrossRef]
- Snitzer, E. Proposed fiber cavities for optical masers. Appl. Phys. 1964, 32, 36–39. [Google Scholar] [CrossRef]
- Hegarty, J.; Broer, M.M.; Golding, B.; Simpson, J.R.; MacChesney, J.B. Photon echoes below 1 K in a Nd3+- doped glass fiber. Phys. Rev. Lett. 1983, 51, 2033–2035. [Google Scholar] [CrossRef]
- Poole, S.B.; Payne, D.N.; Fermann, M.E. Fabrication of low-loss optical fibers contalning rare-earth ions. Electron. Lett. 1985, 21, 737–738. [Google Scholar] [CrossRef] [Green Version]
- Poole, S.B.; Payne, D.N.; Mears, R.J.; Fermann, M.E.; Laming, R.L. Fabrication and characterization of low loss optical fibers containing rare earth ions. J. Lightwave Tech. 1986, LT-4, 870–876. [Google Scholar] [CrossRef]
- Mears, R.J.; Reekie, L.; Poole, S.B.; Payne, D.N. Neodymium-doped silica single-miber lasers. Electron. Lett. 1985, 21, 737–738. [Google Scholar] [CrossRef]
- Taverner, D.; Richardson, D.J.; Dong, L.; Caplen, J.E.; Williams, K.; Penty, R.V. 158-pJ pulses from a singletransverse-mode, large-mode-area erbium-doped fiber amplifier. Opt. Lett. 1997, 22, 378–380. [Google Scholar] [CrossRef] [Green Version]
- Nemova, G.; Kashyap, R. High-power long period grating assisted EDFA. J. Opt. Soc. Am. B 2008, 25, 1322–1327. [Google Scholar] [CrossRef]
- Martin, W.S.; Chernoch, J.P. Multiple Internal Reflection Face-Pumped Laser. U.S. Patent 3633126A, 4 January 1972. [Google Scholar]
- Eggleston, J.M.; Frantz, L.M.; Injeyan, H. Derivation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers. IEEE J. Qunntum Electron. 1989, 25, 1855–1862. [Google Scholar] [CrossRef]
- Giesen, A.; Hiigel, H.; Voss, A.; Wittig, K.; Brauch, U.; Opower, H. Scalable concept for diode-pumped high-power solid-state lasers. Appl. Phys. B 1994, 58, 365–372. [Google Scholar] [CrossRef]
- Giesen, A.; Hugel, H.; Voss, A.; Wittig, K.; Brauch, U.; Opower, H. Diocle—Pumped high-power solid-state laser: Concept and first results with Yb:YAG. In Advanced Solid State Lasers; OSA Proceeding Series; Optical Society of America: Washington, DC, USA, 1994. [Google Scholar]
- Bowman, S.R. Laser without internal heat generation. IEEE J. Quantum Electron. 1999, 35, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Nemova, G.; Kashyap, R. Laser cooling of solids. Rep. Prog. Phys. 2010, 73, 086501. [Google Scholar] [CrossRef] [Green Version]
- Koechner, W. Absorbed pump power, thermal profile and stresses in a cw pumped Nd: YAG crystal. Appl. Opt. 1970, 9, 1429–1434. [Google Scholar] [CrossRef]
- Schmid, M.; Graf, T.; Weber, H.P. Analytical model of the temperature distribution and the thermally induced birefringence in laser rods with cylindrically symmetric heating. J. Opt. Soc. Am. B 2000, 17, 1398–1404. [Google Scholar] [CrossRef]
- Farrukh, U.; Buoncristiani, A.; Byvik, C. An analysis of the temperature distribution in finite solid-state laser rods. IEEE J. Quantum Electron. 1988, 34, 2253–2263. [Google Scholar] [CrossRef]
- Innocenzi, M.; Yura, H.; Fincher, C.; Fields, R. Thermal modeling of continuous-wave end-pumped solidstate lasers. Appl. Phys. Lett. 1990, 56, 1831–1833. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, T.; Kao, C.; Wang, C.; Wang, S. Optimization in scaling fiber-coupled laser-diode endpumped lasers to higher power: Influence on thermal effect. IEEE J. Quantum Electron. 1997, 33, 1424–1429. [Google Scholar] [CrossRef]
- Cousins, A. Temperature and thermal stress scaling in finite-length end-pumped laser rods. IEEE J. Quantum Electron. 1992, 28, 1057–1069. [Google Scholar] [CrossRef]
- Pringsheim, P. Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung. Z. Phys. 1929, 57, 739–746. [Google Scholar] [CrossRef]
- Epstein, R.I.; Buchwald, M.I.; Edwards, B.C.; Gosnell, T.R.; Mungan, C.E. Observation of laser-induced fluorescent cooling of a solid. Nat. Cell Biol. 1995, 377, 500–502. [Google Scholar] [CrossRef]
- Sheik-Bahae, M.; Epstein, R.I. Optical refrigeration. Nat. Photonics 2007, 1, 693–699. [Google Scholar] [CrossRef]
- Andrianov, S.N.; Samartsev, V.V. Solid-state lasers with internal laser refrigeration effect. In Proceedings of the SPIE PECS’2001: Photon Echo and Coherent Spectroscopy, Nizhny Novgorod, Russia, 15 November 2001; Volume 4605, pp. 208–213. [Google Scholar]
- Nemova, G.; Kashyap, R. Athermal continuous-wave fiber amplifier. Opt. Commun. 2009, 282, 2571–2575. [Google Scholar] [CrossRef]
- Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–173. [Google Scholar] [CrossRef]
- Mungan, C.E. Thermodynamics of radiation-balanced lasing. J. Opt. Soc. Am. B 2003, 20, 1075–1082. [Google Scholar] [CrossRef]
- Bowman, S.R.; Jenkins, N.W.; O’Connor, S.P.; Feldman, B.J. Sensitivity of stability of a radiation-balanced laser system. IEEE J. Quantum Electron. 2002, 38, 1339–1348. [Google Scholar] [CrossRef]
- Bowman, S.R.; Mungan, C. New materials for optical cooling. Appl. Phys. B 2000, 71, 807–811. [Google Scholar] [CrossRef]
- Bowman, S.R.; Jenkins, N.W.; Feldman, B.; O’Connor, S. Demonstration of a radiatively cooled laser. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO), Long Beach, CA, USA, 24 May 2002. [Google Scholar]
- Bowman, S.R.; O’Connor, S.; Biswal, S. Ytterbium laser with reduced thermal heating. IEEE J. Quantum Electron. 2005, 41, 1510–1517. [Google Scholar] [CrossRef]
- Bowman, S.R.; O’Connor, S.P.; Biswal, S.; Condon, N.J.; Rosenberg, A. Minimizing heat generation in solid-state lasers. IEEE J. Quantum Electron. 2010, 46, 1076–1085. [Google Scholar] [CrossRef]
- Bowman, S.R. Optically cooled lasers. In Laser Cooling: Fundamental Properties and Application; Nemova, G., Ed.; Pan Stanford Publishing Pte. Ltd.: Singapore, 2016. [Google Scholar]
- Nemova, G.; Kashyap, R. Thin-disk athermal laser system. Opt. Commun. 2014, 319, 100–105. [Google Scholar] [CrossRef]
- Yang, Z.; Meng, J.; Albrecht, A.R.; Sheik-Bahae, M. Radiation-balanced Yb:YAG disk laser. Opt. Express 2019, 27, 1392–1400. [Google Scholar] [CrossRef]
- Yang, Z.; Meng, J.; Albrecht, A.R.; Kock, J.; Sheik-Bahae, M. Radiation-balanced thin-disk lasers in Yb:YAG and Yb:YLF. In Proceedings of the SPIE Photonic Heat Engines: Science and Applications, San Francisco, CA, USA, 2–7 February 2019; p. 23. [Google Scholar]
- Volpi, A.; Kocka, J.; Albrechta, A.R.; Rostamia, S.; Hehlenb, M.P.; Sheik-Bahae, M. Mode scaling in radiation balanced disk lasers for various gain materials. In Proceedings of the SPIE Photonic Heat Engines: Science and Applications III, Online, 6–12 March 2021; Volume 11702, p. 117020U. [Google Scholar]
- Nemova, G.; Kashyap, R. Fiber amplifier with integrated optical cooler. J. Opt. Soc. Am. B 2009, 26, 2237–2241. [Google Scholar] [CrossRef]
- Nemova, G.; Kashyap, R. Raman fiber amplifier with integrated cooler. IEEE J. Light. Technol. 2009, 27, 5597–5601. [Google Scholar] [CrossRef] [Green Version]
- Nemova, G.; Kashyap, R. High-power fiber lasers with integrated rare-earth optical cooler. In Proceedings of the SPIE Laser Refrigeration of Solids III, San Francisco, CA, USA, 23–28 January 2010; Volume 7614, pp. 761406–761416. [Google Scholar]
- Mafi, A. Temperature distribution inside a double-cladding optical fiber laser or amplifier. J. Opt. Soc. Am. B 2020, 37, 1821–1828. [Google Scholar] [CrossRef]
- Peysokhan, M.; Mobini, E.; Allahverdi, A.; Abaie, B.; Mafi, A. Characterization of Yb-doped ZBLAN fiber as a platform for radiation-balanced lasers. Photonics Res. 2020, 8, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Peysokhan, M.; Mobini, E.; Mafi, A. Analytical formulation of a high-power Yb-doped double-cladding fiber laser. OSA Contin. 2020, 3, 1940–1951. [Google Scholar] [CrossRef]
- Vigneron, P.B.; Knalla, J.; Boilardb, T.; Bernierb, M.; Digonnet, M.J.F. Observation of anti-Stokes-fluorescence cooling in a ZBLAN fiber with a Yb-doped cladding. In Proceedings of the SPIE OPTO, Online, 5 April 2021; Volume 11702, p. 117020A. [Google Scholar]
- Gosnell, T.R. Laser cooling of a solid by 65 K starting from room temperature. Opt. Lett. 1999, 24, 1041–1043. [Google Scholar] [CrossRef]
- Knall, J.M.; Arora, A.; Bernier, M.; Digonnet, M.J.F. Anti-stokes fluorescence cooling in Yb-doped ZBLAN fibers at atmospheric pressure: Experiments and near-future prospects. In Proceedings of the SPIE Photonic Heat Engines: Science and Applications, San Francisco, CA, USA, 2–7 February 2019; Volume 10936, p. 109360F. [Google Scholar]
- Knall, J.; Arora, A.; Bernier, M.; Cozic, S.; Digonnet, M.J.F. Demonstration of anti-Stokes cooling in Ybdoped ZBLAN fibers at atmospheric pressure. Opt. Lett. 2019, 44, 2338–2341. [Google Scholar] [CrossRef] [PubMed]
- Arora, A.; Esmaeelpour, M.; Bernier, M.; Digonnet, M.J.F. High-resolution slow-light fiber Bragg grating temperature sensor with phase-sensitive detection. Opt. Lett. 2018, 43, 3337–3340. [Google Scholar] [CrossRef] [PubMed]
- Ytterbium Single-Mode CW Systems. Available online: http://www.ipgphotonics.com/en/products/lasers/high-power-cwfiber-lasers/1-micron/yls-sm-1-10-kw (accessed on 13 August 2021).
- Aydin, Y.O.; Fortin, V.; Vallée, R.; Bernier, M. Towards power scaling of 2.8 μm fiber lasers. Opt. Lett. 2018, 43, 4542–4545. [Google Scholar] [CrossRef]
- Knall, J.; Vigneron, P.-B.; Engholm, M.; Dragic, P.D.; Yu, N.; Ballato, J.; Bernier, M.; Digonnet, M.J.F. Laser cooling in a silica optical fiber at atmospheric pressure. Opt. Lett. 2020, 45, 1092–1095. [Google Scholar] [CrossRef]
- Mobini, E.; Rostami, S.; Peysokhan, M.; Albrecht, A.; Kuhn, S.; Hein, S.; Hupel, C.; Nold, J.; Haarlammert, N.; Schreiber, T.; et al. Laser cooling in silica glass. arXiv 2020, arXiv:1910.10609v1. [Google Scholar]
- Knall, J.; Engholm, M.; Ballato, J.; Dragic, P.D.; Yu, N.; Digonnet, M.J.F. Experimental comparison of silica fibers for laser cooling. Opt. Lett. 2002, 45, 4020–4023. [Google Scholar] [CrossRef] [PubMed]
- Knall, J.M.; Engholm, M.; Boilard, T.; Bernier, M.; Digonnet, M.J.F. A radiation-balanced silica fiber amplifier. arXiv 2021, arXiv:2103.02698. [Google Scholar]
- Knall, J.M.; Digonnet, M.J.F. Design of high-power radiation-balanced silica fiber lasers with a doped core and cladding. J. Light. Technol. 2021, 39, 2497–2504. [Google Scholar] [CrossRef]
- Nemova, G.; Kashyap, R. Laser cooling with Tm3+-doped nano-crystals of oxy-fluoride glass ceramic. In Proceedings of the SPIE Photonics Europe, Brussels, Belgium, 1 May 2012; Volume 8424, p. 84242I. [Google Scholar]
- Nemova, G.; Kashyap, R. Laser cooling with Tm3+-doped oxy-fluoride glass ceramic. J. Opt. Soc. Am. B 2012, 29, 3034–3038. [Google Scholar] [CrossRef]
- Xia, X.; Pauzauskie, P.J.; Pant, A.; Davis, E.J. Laser refrigeration of optical fibers via optically-active composite cladding materials. In Proceedings of the SPIE Photonic Heat Engines: Science and Applications, San Francisco, CA, USA, 2–7 February 2019; Volume 10936, p. 109360I. [Google Scholar]
- Xia, X.; Pant, A.; Davis, E.J.; Pauzauskie, P.J. Design of a radiation-balanced fiber-laser via optically active composite cladding materials. J. Opt. Soc. Am. B 2019, 36, 3307–3314. [Google Scholar] [CrossRef]
- Fernandez-Bravo, A.; Yao, K.; Barnard, E.S.; Borys, N.J.; Levy, E.S.; Tian, B.; Tajon, C.A.; Moretti, L.; Altoe, M.V.; Aloni, S.; et al. Continuous-wave upconverting nanoparticle microlasers. Nat. Nanotechnol. 2018, 13, 572–577. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Teitelboim, A.; Fernandez-Bravo, A.; Yao, K.; Altoe, M.V.P.; Aloni, S.; Zhang, C.; Cohen, B.E.; Schuck, P.J.; Chan, E.M. Controlled Assembly of Upconverting Nanoparticles for Low-Threshold Microlasers and Their Imaging in Scattering Media. ACS Nano 2020, 14, 1508–1519. [Google Scholar] [CrossRef]
- Xiaa, X.; Pantb, A.; Felstedb, R.G.; Gariepyb, R.E.; Davisc, E.J.; Pauzauskie, P.J. Radiation balanced spherical microlaser. In Proceedings of the SPIE Photonic Heat Engines: Science and Applications III, Online, 6–12 March 2021; Volume 11702, p. 117020R. [Google Scholar]
- Nakayama, Y.; Harada, Y.; Kita, T. An energy transfer accompanied by phonon absorption in ytterbium-doped yttrium aluminum perovskite for optical refrigeration. Appl. Phys. Lett. 2020, 117, 041104. [Google Scholar] [CrossRef]
- Nakayama, Y.; Harada, Y.; Kita, T. Yb-doped yttrium aluminum perovskite for radiation balanced laser application. In Proceedings of the SPIE Photonic Heat Engines: Science and Applications III, Online, 6–12 March 2021; Volume 11702, p. 117020K. [Google Scholar]
- Sheik-Bahae, M.; Yang, Z. Optimum Operation of Radiation-Balanced Lasers. IEEE J. Quantum Electron. 2020, 56, 1000109. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemova, G. Radiation-Balanced Lasers: History, Status, Potential. Appl. Sci. 2021, 11, 7539. https://doi.org/10.3390/app11167539
Nemova G. Radiation-Balanced Lasers: History, Status, Potential. Applied Sciences. 2021; 11(16):7539. https://doi.org/10.3390/app11167539
Chicago/Turabian StyleNemova, Galina. 2021. "Radiation-Balanced Lasers: History, Status, Potential" Applied Sciences 11, no. 16: 7539. https://doi.org/10.3390/app11167539
APA StyleNemova, G. (2021). Radiation-Balanced Lasers: History, Status, Potential. Applied Sciences, 11(16), 7539. https://doi.org/10.3390/app11167539