A Comparative Test on the Sensitivity of Freshwater and Marine Microalgae to Benzo-Sulfonamides, -Thiazoles and -Triazoles
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Algal Growth Inhibition Assay
2.3. Bioluminescence Inhibition Assay
2.4. Statistical Analyses
3. Results
3.1. Preliminary Assessments
3.2. Growth Response of Dunaliella tertiolecta
- Benzenesulfonamides. The algae growth rate was affected by p-TSA at the tested concentrations down to 0.1 mg L−1 (Figure 3). This concentration reduced the growth rate by about 5%, a quite negligible value. BSA also showed a harmful effect on algae, but the growth rate was decreased with respect to the control only by the concentrations in the range 100–10 mg L−1 (K–Wallis χ2BSA = 5.21, df = 2, p < 0.05 χ2pTSA = 5.34, p = 0.06).
- Benzothiazoles. All the benzothiazoles affected D. tertiolecta growth rate at the higher concentrations (Mann–U100 = 7, p < 0.05; Mann–U50 = 8, p < 0.05), but the lowest effective concentration was different for the three compounds. Concerning BT, it corresponded to 50 mg L−1, whereas 5 mg L−1 was the lowest concentration of HOBT, which reduced the population growth in a significant way. The lowest concentration of MeSBT producing a reduction in the growth rate was the 10 mg L−1 one (Figure 4).
- Benzotriazoles. The concentrations in the range 5–100 mg L−1 of BTR reduced the growth rate of the algal population, and 5TTR showed to be a little more toxic than BTR since all concentrations were able to produce a minimal but measurable reduction (K–Wallis test; χ2BTR = 5.99, df = 2, p = 0.05 and χ25TTR = 7.65, p < 0.05) (Figure 5). The effect of some compounds, such as BT and BSA, became significant only at the B or C measuring time, confirming that the toxicity, as well as the possible eutrophic effects, is more frequently evident in these organisms after chronic exposure.
3.3. Growth Response of Raphidocelis subcapitata
3.4. Growth Response of Phaeodactylum tricornutum
- Benzenesulfonamides. The toxicity of the two tested compounds on the marine diatom can be considered very similar in both the absolute values of growth inhibition and the lowest effective concentration, which was 5 mg L−1 in both cases (Figure 3).
- Benzothiazoles. These compounds showed quite different effects on algal growth. The BT and HOBT higher concentrations produced inhibition values above 80% (K–Wallis test; = 6.20, p < 0.05; = 6.31 p < 0.05; Figure 4). A measurable effect was produced until the 5 mg L−1 concentration, and marginal inhibition can be ascribed to the 1 mg L−1 solution in the case of HOBT. MeSBT resulted in being the least toxic, and the lowest effective concentration was the 10 mg L−1 one (K–Wallis test; = 5.84 p = ns; Figure 4).
- Benzotriazoles. To this alga, the 5TTR solutions resulted in being toxic at all concentrations between 0.1 and 100 mg L−1, producing % inhibition values quite regularly, dependent on the benzothiazole concentration (K–Wallis test; =7.15, p < 0.05; Figure 5).
3.5. Effects of the Compounds on Vibrio fisheri Light Emission Intensity
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hidalgo-Serrano, M.; Borrull, F.; Marcé, R.M.; Pocurull, E. Presence of benzotriazoles, benzothiazoles, and benzensulfonamides in surface water samples by liquid chromatography coupled to high-resolution mass spectrometry. Sep. Sci. Plus 2019, 2, 72–80. [Google Scholar] [CrossRef]
- Richardson, S.D.; Kimura, S.Y. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2016, 88, 546–582. [Google Scholar] [CrossRef]
- Bruzzoniti, M.C.; Sarzanini, C.; Rivoira, L.; Tumiatti, V.; Maina, R. Simultaneous determination of five common additives in insulating mineral oils by high-performance liquid chromatography with ultraviolet and coulometric detection. J. Sep. Sci. 2016, 39, 2955–2962. [Google Scholar] [CrossRef]
- Janna, H.; Scrimshaw, M.D.; Williams, R.J.; Churchley, J.; Sumpter, J.P. From dishwasher to tap? Xenobiotic substances benzotriazole and tolyltriazole in the environment. Environ. Sci. Technol. 2011, 45, 3858–3864. [Google Scholar] [CrossRef] [Green Version]
- Careghini, A.; Mastorgio, A.F.; Saponaro, S.; Sezenna, E. Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: A review. Environ. Sci. Pollut. Res. Int. 2015, 62, 5711–5741. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.; Kim, U.-J.; Kannan, K. A review of environmental occurrence, fate, exposure, and toxicity of benzothiazoles. Environ. Sci. Technol. 2018, 52, 5007–5026. [Google Scholar] [CrossRef] [PubMed]
- Herrero, P.; Borrull, F.; Pocurrull, E.; Marcé, R.M. An overview of analytical methods and occurrence of benzotriazoles, benzothiazoles and benzosulfonamides in the environment. Trends Anal. Chem. 2014, 62, 46–55. [Google Scholar] [CrossRef]
- Richter, D.; Massmann, G.; Taute, T.; Duennbier, U. Investigation of the fate of sulfonamides downgradient of a decommissioned sewage farm near Berlin, Germany. J. Contam. Hydrol. 2009, 106, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Asheim, J.; Vike-Jonas, K.; Gonzalez, S.V.; Lierhagen, S.; Venkatraman, V.; Veivåg, I.L.S.; Snilsberg, B.; Flaten, T.P.; Asimakopoulos, A.G. Benzotriazoles, benzothiazoles and trace elements in an urban road setting in Trondheim, Norway: Re-visiting the chemical markers of traffic pollution. Sci. Total Environ. 2019, 649, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, J.B.; DeLeon, I.R.; Tracy, R.E. Evidence for toxic anthropogenic chemicals in human thrombogenic coronary plaques. Arch. Environ. Contam. Toxicol. 1985, 14, 529–534. [Google Scholar] [CrossRef]
- Asimakopoulos, A.G.; Wang, L.; Thomaidis, N.S.; Kannan, K. Benzotriazoles and benzothiazoles in human urine from several countries: A perspective on occurrence, biotransformation, and human exposure. Environ. Int. 2013, 59, 274–281. [Google Scholar] [CrossRef]
- Wang, L.; Asimakopoulos, A.G.; Kannan, K. Accumulation of 19 environmental phenolic and xenobiotic heterocyclic aromatic compounds in human adipose tissue. Environ. Int. 2015, 78, 45–50. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Asimakopoulos, A.G.; Sun, H.; Zhao, Z.; Zhang, Z.; Zhang, L.; Wang, Q. Benzotriazoles and benzothiazoles in paired maternal urine and amniotic fluid samples from Tianjin, China. Chemosphere 2018, 199, 524–530. [Google Scholar] [CrossRef]
- Sorahan, T. Cancer risks in chemical production workers exposed to 2-mercaptobenzothiazole. Occup. Environ. Med. 2009, 66, 269–273. [Google Scholar] [CrossRef]
- Wang, X.; Suskind, R.R. Comparative studies of the sensitization potential of morpholine, 2-mercaptobenzothiazole and 2 of their derivatives in guinea pigs. Contact Dermat. 1988, 19, 11–15. [Google Scholar] [CrossRef] [PubMed]
- U.S. Consumer Product Safety Commission (CPSC). Sensory and Pulmonary Irritation Studies of Carpet System Materials and Their Constituent Chemicals. 2006. Available online: http://www.cpsc.gov/LIBRARY/FOIA/FOIA98/os/3519926D.pdf (accessed on 7 July 2021).
- Wan, Y.; Xue, J.; Kannan, K. Benzothiazoles in indoor air from Albany, New York, USA, and its implications for inhalation exposure. J. Hazard. Mater. 2016, 311, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Asimakopoulos, A.G.; Moon, H.B.; Nakata, H.; Kannan, K. Benzotriazole, benzothiazole, and benzophenone compounds in indoor dust from the United States and East Asian countries. Environ. Sci. Technol. 2013, 47, 4752–4759. [Google Scholar] [CrossRef] [PubMed]
- Seeland, A.; Oetken, M.; Kiss, A.; Fries, E.; Oehlmann, J. Acute and chronic toxicity of benzotriazoles to aquatic organisms. Environ. Sci. Pollut. Res. 2012, 19, 1781–1790. [Google Scholar] [CrossRef]
- Durjava, M.K.; Kolar, B.; Arnus, L.; Papa, E.; Kovarich, S.; Sahlin, U.; Peijnenburg, W. Experimental assessment of the environmental fate and effects of triazoles and benzotriazole. Altern. Lab. Anim. 2013, 41, 65–75. [Google Scholar] [CrossRef]
- Han, X.; Xie, Z.Y.; Tian, Y.H.; Yan, W.; Miao, L.; Zhang, L.L.; Zhu, X.W.; Xu, W. Spatial and seasonal variations of organic corrosion inhibitors in the Pearl River, South China: Contributions of sewage discharge and urban rainfall runoff. Environ. Pollut. 2020, 262, 114321. [Google Scholar] [CrossRef] [PubMed]
- Matamoros, V.; Jover, E.; Bayona, J.M. Occurrence and fate of benzothiazoles and benzotriazoles in constructed wetlands. Water Sci. Technol. 2010, 61, 191–198. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Sun, H.; Zhou, Q. Widespread occurrence of benzotriazoles and benzothiazoles in tap water: Influencing factors and contribution to human exposure. Environ. Sci. Technol. 2016, 50, 2709–2717. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Z.F.; Xu, L.; Liu, L.Y.; Song, W.W.; Zhu, F.J.; Li, Y.F.; Ma, W.L. Occurrence and fate of benzotriazoles UV filters in a typical residential wastewater treatment plant in Harbin, China. Environ. Pollut 2017, 227, 215–222. [Google Scholar] [CrossRef]
- Felis, E.; Sochacki, A.; Magiera, S. Degradation of benzotriazole and benzothiazole in treatment wetlands and by artificial sunlight. Water Res. 2016, 104, 441–448. [Google Scholar] [CrossRef]
- Karthikraj, R.; Kannan, K. Mass loading and removal of benzotriazoles, benzothiazoles, benzophenones, and bisphenols in Indian sewage treatment plants. Chemosphere 2017, 181, 216–223. [Google Scholar] [CrossRef]
- Gatidou, G.; Oursousdou, M.; Stefanatou, A.; Stasinakis, A.S. Removal mechanisms of benzotriazoles in duckweed Lemna minor wastewater treatment systems. Sci. Total Environ. 2017, 596–597, 12–17. [Google Scholar] [CrossRef]
- Giraudo, M.; Douville, M.; Cottin, G.; Houde, M. Transcriptomics, cellular and life-history responses of Daphnia magna chronically exposed to benzotriazoles: Endocrine distrupting potential and molting effects. PLoS ONE 2017, 12, e0171763. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Xing, Y.; Feng, Z.; Zhang, H.; Li, C.; Gong, Z.; Wang, L.; Sun, H. Hepatotoxicity of benzotriazole and its effect on the cadmium induced toxicity in zebrafish Danio rerio. Environ. Pollut. 2017, 224, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Meffe, R.; Kohfahl, C.; Hamann, E.; Greskowiak, J.; Massmann, G.; Dünnbier, U.; Pekdeger, A. Fate of para-toluenesulfonamide (p-TSA) in groundwater under anoxic conditions: Modelling results from a field site in Berlin (Germany). Environ. Sci. Pollut. Res. 2014, 21, 568–583. [Google Scholar] [CrossRef]
- Zeng, F.; Sherry, J.P.; Bols, N.C. Evaluating the toxic potential of benzothiazoles with the rainbow trout cell lines, RTgill-W1 and RTL-W1. Chemosphere 2016, 155, 308–318. [Google Scholar] [CrossRef]
- Molins-Delgado, D.; Díaz-Cruz, M.S.; Barceló, D. Removal of polar UV stabilizers in biological wastewater treatments and ecotoxicological implications. Chemosphere 2015, 119S, S51–S57. [Google Scholar] [CrossRef]
- Yang, T.; Mai, J.; Wu, S.; Liu, C.; Tang, L.; Mo, Z.; Zhang, M.; Guo, L.; Liu, M.; Ma, J. UV/chlorine process for degradation of benzothiazole and benzotriazole in water: Efficiency, mechanism, and toxicity evaluation. Sci. Total Environ. 2021, 760, 144304. [Google Scholar] [CrossRef] [PubMed]
- Gatidou, G.; Anastopoulou, P.; Aloupi, M.; Stasinakis, A.S. Growth inhibition and fate of benzotriazoles in Chlorella sorokiniana cultures. Sci. Total Environ. 2019, 663, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Loos, R.; Tavazzi, S.; Mariani, G.; Suurkuusk, G.; Paracchini, B.; Umlauf, G. Analysis of emerging organic contaminants in water, fish, and suspended particulate matter (SPM) in the Joint Danube Survey using solid-phase extraction followed by UHPLC-MS-MS and GC-MS analysis. Sci. Total Environ. 2017, 607–608, 1201–1212. [Google Scholar] [CrossRef]
- Lu, Z.; De Silva, A.O.; Zhou, W.; Tetreault, G.R.; de Solla, S.R.; Fair, P.A.; Houde, M.; Bossart, G.; Derek, C.; Muir, G. Substituted diphenylamine antioxidants and benzotriazole UV stabilizers in blood plasma of fish, turtles, birds and dolphins from North America. Sci. Total Environ. 2019, 647, 182–190. [Google Scholar] [CrossRef]
- OEDC. Advisory Document of the Working Group on Good Laboratory Practice on the Management, Characterisation and Use of Test Items. Environment Directorate Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology. 2018. Available online: https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2018)6&doclanguage=en (accessed on 7 July 2021).
- Camuel, A.; Guieysse, B.; Alcántara, C.; Béchet, Q. Fast algal eco-toxicity assessment: Influence of light intensity and exposure time on Chlorella vulgaris inhibition by atrazine and DCMU. Ecotoxicol. Environ. Saf. 2017, 140, 141–147. [Google Scholar] [CrossRef]
- Chhetri, R.K.; Baun, A.; Andersen, H.R. Algal toxicity of the alternative disinfectants performic acid (PFA), peracetic acid (PPA) chlorine dioxide (ClO2) and their by-products hydrogen peroxide (H2O2) and chlorite (ClO2−). Int. J. Hyg. Environ. Health 2017, 220, 570–574. [Google Scholar] [CrossRef] [Green Version]
- DeLorenzo, M.E.; Keller, J.M.; Arthur, C.D.; Finnegan, M.C.; Harper, H.E.; Winder, V.L.; Zdankiewicz, D.L. Toxicity of the antimicrobial compound triclosan and formation of the metabolite methyl-triclosan in estuarine systems. Environ. Toxicol. 2008, 23, 224–232. [Google Scholar] [CrossRef]
- ISO 14442:2006. Water Quality—Guidelines for Algal Growth Inhibition Tests with Poorly Soluble Materials, Volatile Compounds, Metals, and Wastewater. Available online: https://www.iso.org/standard/34814.html (accessed on 7 July 2021).
- OEDC. Freshwater alga and cyanobacteria, growth Inhibition test (n.201). Guidelines for Testing of Chemicals, Section 2; OECD: Paris, France. Available online: https://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-2-effects-on-biotic-systems_20745761 (accessed on 18 August 2021).
- Borowitzka, M.A.; Siva, C.J. The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. J. Appl. Phycol. 2007, 19, 567–590. [Google Scholar] [CrossRef]
- Manzo, S.; Miglietta, M.L.; Rametta, G.; Buono, S.; Di Francia, G. Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Sci. Total Environ. 2013, 445–446, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Leliaert, F.; Smith, D.R.; Moreau, H.; Herron, M.D.; Verbruggen, H.; Delwiche, F.; De Clerck, O. Phylogeny and molecular evolution of the green algae. Crit. Rev. Plant. Sci. 2012, 31, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Saxena, R.C. An Introduction to microalgae: Diversity and significance. In Handbook of Marine Microalgae, 1st ed.; Kim, S.K., Ed.; Academic Press: New York, NY, USA, 2015; pp. 11–24. [Google Scholar] [CrossRef]
- ISO 11348-3:2007. Water Quality—Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio Fischeri (Luminescent Bacteria Test). Available online: https://www.iso.org/standard/40518.html (accessed on 7 July 2021).
- Johnson, B.T. Microtox® Acute Toxicity Test. In Small-Scale Freshwater Toxicity Investigations; Blaise, C., Férard, J.F., Eds.; Springer: Dordrecht, Germany, 2005. [Google Scholar] [CrossRef]
- Algae Research and Supply. F/2 Medium. Available online: https://algaeresearchsupply.com/pages/f-2-media (accessed on 7 July 2021).
- CCLA. Culture Collection of Autotrophic Organisms. The Jaworskis’ Medium. Available online: https://ccala.butbn.cas.cz/en/jaworskis-medium (accessed on 7 July 2021).
- International Standards Organization. ISO N. 8692/2004 amended by ISO 8692/2012. Water Quality—Freshwater Algal Growth Inhibition Test with Unicellular Green Algae. Available online: https://www.iso.org/standard/54150.html (accessed on 7 July 2021).
- Finney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: New York, NY, USA, 1971. [Google Scholar]
- Steel, R.G.; Torrie, J.H. Principles and Procedures of Statistics, 3rd ed.; Mc-Graw Hill: New York, NY, USA, 2000. [Google Scholar]
- Riberio Rodrigues, L.H.; Arenzon, A.; Raya-Rodriguez, M.T.; Ferreira Fontoura, N. Algal density assessed by spectrophotometry: A calibration curve for the unicellular algae Pseudokirchneriella subcapitata. J. Environ. Chem. Ecotoxicol. 2011, 3, 225–228. [Google Scholar] [CrossRef]
- Montesdeoca-Esponda, S.; Álvarez-Raya, C.; Torres-Padrón, M.E.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Monitoring and environmental risk assessment of benzotriazole UV stabilizers in the sewage and coastal environment of Gran Canaria (Canary Islands, Spain). J. Environ. Manag. 2019, 233, 567–575. [Google Scholar] [CrossRef]
- Flood, S.; Burkholder, J.; Cope, G. Assessment of atrazine toxicity to the estuarine phytoplankter Dunaliella tertiolecta (Chlorophyta), under varying nutrient conditions. Environ. Sci. Pollut. Res. 2018, 25, 11409–11423. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.A. Chronic Toxicities of Surfactants and Detergents Builders to algae—A Review and Risk Assessment. Ecotoxicol. Environ. Saf. 1990, 20, 123–140. [Google Scholar] [CrossRef]
- Lewis, M.A. Use of Freshwater Plants for Phytotoxicity Testing—A Review. Environ. Pollut. 1995, 87, 319–336. [Google Scholar] [CrossRef]
- Blanck, H.; Wangberg, S.A. Pattern of Cotolerance in Marine Periphyton Communities established under Arsenate Stress. Aquatic Toxicol. 1991, 21, 1–14. [Google Scholar] [CrossRef]
- Walsh, G.E. Principles of Toxicity Testing with Marine Unicellular Algae. Environ. Toxicol. Chem. 1988, 7, 979–987. [Google Scholar] [CrossRef]
- Graymore, M.; Stagnitti, F.; Allinson, G. Impacts of atrazine in aquatic ecosystems. Environ. Int. 2001, 26, 483–495. [Google Scholar] [CrossRef]
- Corsi, S.R.; Geis, S.W.; Loyo-Rosales, J.E.; Rice, C.P. Aquatic toxicity of nine aircraft deicer and anti-icer formulations and relative toxicity of additive package ingredients alkylphenol ethoxylates and 4,5-methyl-1H-benzotriazoles. Environ. Sci Technol. 2006, 40, 7409–7415. [Google Scholar] [CrossRef]
- Azizian, M.F.; Nelson, P.O.; Thayumanavan, P.; Williamson, K.J. Environmental impact of highway construction and repair materials on surface and ground waters. Case study: Crumb rubber asphalt concrete. Waste Manag. 2003, 23, 719–728. [Google Scholar] [CrossRef]
- European Chemicals Agency (ECHA). N-cyclohexylbenzothiazol-2-sulphenamide, CAS No: 95-33-0, EINECS No.202-411-2. Summary Risk Assessment Report, Final Report, May. 2008. Available online: https://echa.europa.eu/documents/10162/48e99dc2-8d09-47e5-b167-61e8d2b13fd1 (accessed on 7 July 2021).
- Reemtsma, T.; Fiehn, O.; Kalnowski, G.; Jekel, M. Microbial transformations and biological effects of fungicide-derived benzothiazoles determined in industrial wastewater. Environ. Sci. Technol. 1995, 29, 478–485. [Google Scholar] [CrossRef]
- Pillard, D.A.; Cornell, J.S.; Dufresne, D.L.; Hernandez, M.T. Toxicity of benzotriazole and benzotriazole derivatives to three aquatic species. Wat Res. 2001, 35, 557–560. [Google Scholar] [CrossRef]
- Pérez, P.; Fernández, E.; Beiras, R. Use of Fast Repetition Rate Fluorometry on Detection and Assessment of PAH Toxicity on Microalgae. Water Air Soil Pollut. 2010, 209, 345–356. [Google Scholar] [CrossRef]
- Ray, S.D.; Farris, F.F.; Hartmann, A.C. Hormesis. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 944–948. [Google Scholar] [CrossRef]
- Molins-Delgado, D.; Távora, J.; Diaz-Cruz, M.S.; Barceló, D. UV filters and benzotriazoles in urban aquatic ecosystems: The footprint of daily use products. Sci. Total Environ. 2017, 601–602, 975–986. [Google Scholar] [CrossRef]
Compound | Raphidocelis subcapitata | Dunaliella tertiolecta | Phaeodactylum tricornutum |
---|---|---|---|
BSA | >100 | 57 | >100 |
PTSA | 92 | >100 | >100 |
BTR | 67 | >100 | 81 |
5TTR | 38 | >100 | 30 |
BT | >100 | >100 | 41 |
MESBT | 86 | >100 | 75 |
HOBT | 16 | >100 | 32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canova, L.; Sturini, M.; Maraschi, F.; Sangiorgi, S.; Ferri, E.N. A Comparative Test on the Sensitivity of Freshwater and Marine Microalgae to Benzo-Sulfonamides, -Thiazoles and -Triazoles. Appl. Sci. 2021, 11, 7800. https://doi.org/10.3390/app11177800
Canova L, Sturini M, Maraschi F, Sangiorgi S, Ferri EN. A Comparative Test on the Sensitivity of Freshwater and Marine Microalgae to Benzo-Sulfonamides, -Thiazoles and -Triazoles. Applied Sciences. 2021; 11(17):7800. https://doi.org/10.3390/app11177800
Chicago/Turabian StyleCanova, Luca, Michela Sturini, Federica Maraschi, Stefano Sangiorgi, and Elida Nora Ferri. 2021. "A Comparative Test on the Sensitivity of Freshwater and Marine Microalgae to Benzo-Sulfonamides, -Thiazoles and -Triazoles" Applied Sciences 11, no. 17: 7800. https://doi.org/10.3390/app11177800
APA StyleCanova, L., Sturini, M., Maraschi, F., Sangiorgi, S., & Ferri, E. N. (2021). A Comparative Test on the Sensitivity of Freshwater and Marine Microalgae to Benzo-Sulfonamides, -Thiazoles and -Triazoles. Applied Sciences, 11(17), 7800. https://doi.org/10.3390/app11177800