Locking Phenomena in Semiconductor Lasers near Threshold with Optical Feedback and Sinusoidal Current Modulation
Abstract
:1. Introduction
2. Model
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lang, R.; Kobayashi, K. External optical feedback effects on semiconductor injection-laser properties. IEEE J. Quantum Electron. 1980, 16, 347. [Google Scholar] [CrossRef]
- Lenstra, D.; Verbeek, B.H.; Denboef, A.J. Coherence collapse in single-mode semiconductor-lasers due to optical feedback. IEEE J. Quantum Electron. 1985, 21, 674. [Google Scholar] [CrossRef]
- Mork, J.; Tromborg, B.; Mark, J. Chaos in semiconductor-lasers with optical feedback: Theory and experiment. IEEE J. Quantum Electron. 1992, 28, 93. [Google Scholar] [CrossRef]
- Ohtsubo, J. Semiconductor Lasers: Stability, Instability and Chaos, 4th ed.; Springer: Berlin, Germany, 2017. [Google Scholar]
- Baums, D.; Elsasser, W.; Gobel, E.O. Farey tree and Devil’s staircase of a modulated external-cavity semiconductor laser. Phys. Rev. Lett. 1989, 63, 155. [Google Scholar] [CrossRef]
- Sacher, S.; Baums, D.; Panknin, P.; Elsasser, W.; Gobel, E.O. Intensity instabilities of semiconductor-lasers under current modulation, external light injection, and delayed feedback’. Phys. Rev. A 1992, 45, 1893. [Google Scholar] [CrossRef] [PubMed]
- Takiguchi, Y.; Liu, Y.; Ohtsubo, J. Low-frequency fluctuation induced by injection-current modulation in semiconductor lasers with optical feedback. Opt. Lett. 1998, 23, 1369. [Google Scholar] [CrossRef] [Green Version]
- Sukow, D.W.; Gauthier, D.J. Entraining power-dropout events in an external-cavity semiconductor laser using weak modulation of the injection current. IEEE J. Quantum Electron. 2000, 36, 175. [Google Scholar] [CrossRef] [Green Version]
- Mendez, J.M.; Laje, R.; Giudici, M.; Aliaga, J.; Mindlin, G.B. Dynamics of periodically forced semiconductor laser with optical feedback. Phys. Rev. E 2001, 63, 066218. [Google Scholar] [CrossRef]
- Lawrence, J.S.; Kane, D.M. Nonlinear dynamics of a laser diode with optical feedback systems subject to modulation. IEEE J. Quantum Electron. 2002, 38, 185. [Google Scholar] [CrossRef]
- Marino, F.; Giudici, M.; Barland, S.; Balle, S. Experimental evidence of stochastic resonance in an excitable optical system. Phys. Rev. Lett. 2002, 88, 040601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, W.-S.; Guzdar, P.N.; Roy, R. Effect of spontaneous emission noise and modulation on semiconductor lasers near threshold with optical feedback. Int. J. Mod. Phys. B 2003, 17, 4123. [Google Scholar] [CrossRef]
- Torre, M.S.; Masoller, C.; Mandel, P.; Shore, K.A. Transverse-mode dynamics in directly modulated vertical-cavity surface-emitting lasers with optical feedback. IEEE J. Quantum Electron. 2004, 40, 620. [Google Scholar] [CrossRef] [Green Version]
- Toomey, J.P.; Kane, D.M.; Lee, M.W.; Shore, K.A. Nonlinear dynamics of semiconductor lasers with feedback and modulation. Opt. Express 2010, 18, 16955. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; El-Sayed, N.Z.; Ibrahim, H. Chaos and noise control by current modulation in semiconductor lasers subject to optical feedback. Eur. Phys. J. D 2012, 66, 141. [Google Scholar] [CrossRef]
- Spitz, O.; Wu, J.G.; Carras, M.; Wong, C.W.; Grillot, F. Chaotic optical power dropouts driven by low frequency bias forcing in a mid-infrared quantum cascade laser. Sci. Rep. 2019, 9, 4451. [Google Scholar] [CrossRef] [PubMed]
- Spitz, O.; Wu, J.G.; Herdt, A.; Carras, M.; Elsasser, W.; Wong, C.W.; Grillot, F. Investigation of chaotic and spiking dynamics in mid-infrared quantum cascade lasers operating continuous-waves and under current modulation. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1200311. [Google Scholar] [CrossRef]
- Hong, Y.; Shore, K.A. Statistical measures of the power dropout ratio in semiconductor lasers subject to optical feedback. Opt. Lett. 2005, 30, 3332. [Google Scholar] [CrossRef]
- Aragoneses, A.; Sorrentino, T.; Perrone, S.; Gauthier, D.J.; Torrent, M.C.; Masoller, C. Experimental and numerical study of the symbolic dynamics of a modulated external-cavity semiconductor laser. Opt. Express 2014, 22, 4705. [Google Scholar] [CrossRef] [Green Version]
- Sorrentino, T.; Quintero-Quiroz, C.; Aragoneses, A.; Torrent, M.C.; Masoller, C. Effects of periodic forcing on the temporally correlated spikes of a semiconductor laser with feedback. Opt. Express 2015, 23, 5571. [Google Scholar] [CrossRef] [Green Version]
- Tiana-Alsina, J.; Quintero-Quiroz, C.; Panozzo, M.; Torrent, M.C.; Masoller, C. Experimental study of modulation waveforms for entraining the spikes emitted by a semiconductor laser with optical feedback. Opt. Express 2018, 26, 9298. [Google Scholar] [CrossRef]
- Torre, M.S.; Masoller, C.; Abraham, N.B.; Ranea-Sandoval, H.F. Carrier dynamics in semiconductor lasers operating in the low-frequency fluctuation regime. J. Opt. B Quantum Semiclass. Opt. 2000, 2, 563. [Google Scholar] [CrossRef]
- Barland, S.; Spinicelli, P.; Giacomelli, G.; Marin, F. Measurement of the working parameters of an air-post vertical-cavity surface-emitting laser. IEEE J. Quantum Electron. 2005, 41, 1235. [Google Scholar] [CrossRef] [Green Version]
- Torcini, A.; Barland, S.; Giacomelli, G.; Marin, F. Low-frequency fluctuations in vertical cavity lasers: Experiments versus Lang-Kobayashi dynamics. Phys. Rev. A 2006, 74, 063801. [Google Scholar] [CrossRef] [Green Version]
- Zamora-Munt, J.; Masoller, C.; Garcia-Ojalvo, J. Transient low-frequency fluctuations in semiconductor lasers with optical feedback. Phys. Rev. A 2010, 81, 033820. [Google Scholar] [CrossRef] [Green Version]
- Heil, T.; Fischer, I.; Elsasser, W. Coexistence of low-frequency fluctuations and stable emission on a single high-gain mode in semiconductor lasers with external optical feedback. Phys. Rev. A 1998, 58, R2672. [Google Scholar] [CrossRef] [Green Version]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Panozzo, M.; Quintero-Quiroz, C.; Tiana-Alsina, J.; Torrent, M.C.; Masoller, C. Experimental characterization of the transition to coherence collapse in a semiconductor laser with optical feedback. Chaos 2017, 27, 114315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Video of the Experimental Intensity Time Series, without Current Modulation, Can Be Seen Here: Noisy Fluctuations Gradually Become Well-Defined Spikes, Which Become Faster and Less Pronounced as the Pump Current Increases. Available online: https://youtu.be/nltBQG_IIWQ (accessed on 17 June 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiana-Alsina, J.; Masoller, C. Locking Phenomena in Semiconductor Lasers near Threshold with Optical Feedback and Sinusoidal Current Modulation. Appl. Sci. 2021, 11, 7871. https://doi.org/10.3390/app11177871
Tiana-Alsina J, Masoller C. Locking Phenomena in Semiconductor Lasers near Threshold with Optical Feedback and Sinusoidal Current Modulation. Applied Sciences. 2021; 11(17):7871. https://doi.org/10.3390/app11177871
Chicago/Turabian StyleTiana-Alsina, Jordi, and Cristina Masoller. 2021. "Locking Phenomena in Semiconductor Lasers near Threshold with Optical Feedback and Sinusoidal Current Modulation" Applied Sciences 11, no. 17: 7871. https://doi.org/10.3390/app11177871
APA StyleTiana-Alsina, J., & Masoller, C. (2021). Locking Phenomena in Semiconductor Lasers near Threshold with Optical Feedback and Sinusoidal Current Modulation. Applied Sciences, 11(17), 7871. https://doi.org/10.3390/app11177871