Multi-Parametric Imaging of Etruscan Chamber Tombs: Grotte Di Castro Case Study (Italy)
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Geological and Archeological Settings
2.2. Electrical Resistivity Data Acquisition
2.3. GPR Data Acquisition
2.4. Radon and Thoron Soil Gas Data Acquisition
3. Results
3.1. Electrical Resistivity Results
3.2. GPR Results
3.3. Radon and Thoron Results
4. Discussion
4.1. Geophysical and Geochemical Data Overlay
4.2. Archeological Relevance of the Geophysical and Geochemical Results
- − The feature “A”, which includes the anomalies e1/G1, e2/G2/SGC7, and e8, which are spatially related to the excavated tomb Eb2.
- − The feature “B”, which includes the anomalies e3/SGC2, e7/G7, GC9, e6/GC11, and e5/G5/GC13.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pellegrini, E.; Leotta, M.C.; Pacetti, M.S.; Rafanelli, S.; Schiappelli, A.; Severi, E.; Buchicchio, F.T.F.Z.; Abbadessa, A.; Martino, C.; Occhiogrosso, F.; et al. Bolsena e la sponda occidentale della Val di Lago: Un aggiornamento. Mélanges École Française Rome Antiq. 2011, 123, 13–105. [Google Scholar] [CrossRef]
- Wynn, J.C. A review of geophysical methods used in archaeology. Geoarchaeology 1986, 1, 245–257. [Google Scholar] [CrossRef]
- Gaffney, C. Detecting trends in the prediction of the buried past: A review of geophysical techniques in archaeology. Archaeometry 2008, 50, 313–336. [Google Scholar] [CrossRef]
- Orlando, L.; Piro, S.; Versino, L. Location of sub-surface geoelectric anomalies for archaeological work: A comparison between experimental arrays and interpretation using numerical methods. Geoexploration 1987, 24, 227–237. [Google Scholar] [CrossRef]
- Lapenna, V. Resilient and sustainable cities of tomorrow: The role of applied geophysics. Boll. Geofis. Teor. Appl. 2017, 58, 237–251. [Google Scholar]
- Brizzolari, E.; Ermolli, F.; Orlando, L.; Piro, S.; Versino, L. Integrated geophysical methods in archaeological surveys. J. Appl. Geophys. 1992, 29, 47–55. [Google Scholar] [CrossRef]
- Smriglio, F.; Papale, E.; Verga, F.; Piro, S. Noninvasive geophysical integrated survey at Madonna del Giglio (Sabine necropolis, Magliano Sabina, Latium, Central Italy). Archaeol. Anthropol. Sci. 2020, 12, 79. [Google Scholar] [CrossRef]
- Porcelli, F.; Sambuelli, L.; Comina, C.; Spanò, A.; Lingua, A.; Calantropio, A.; Catanzariti, G.; Chiabrando, F.; Fischanger, F.; Maschio, P.; et al. Integrated Geophysics and Geomatics Surveys in the Valley of the Kings. Sensors 2020, 20, 1552. [Google Scholar] [CrossRef] [Green Version]
- El Aguizy, O.O.; Gobashy, M.M.; Metwally, A.; Aoliman, K.S.; Nader, E.L. The discovery of the tomb of the Great Army General Iwrhya: A quasi 3D Electrical Resistivity Tomography (ERT), Saqqara, Giza, Egypt. Contrib. Geophys. 2020, 50, 425–446. [Google Scholar]
- Cozzolino, M.; Baković, M.; Borovinić, N.; Galli, G.; Gentile, V.; Jabučanin, M.; Mauriello, P.; Merola, P.; Živanović, M. The Contribution of Geophysics to the Knowledge of the Hidden Archaeological Heritage of Montenegro. Geosciences 2020, 10, 187. [Google Scholar] [CrossRef]
- Di Mauro, D.; Alfonsi, L.; Sapia, V.; Urbini, S. A neighborhood revealed by geophysical prospection: An example of urbanization at the Phoenician–Punic settlement of Mozia (western Sicily, Italy). J. Appl. Geophys. 2014, 104, 114–120. [Google Scholar] [CrossRef]
- Dick, H.C.; Pringle, J.K.; Wisniewski, K.D.; Goodwin, J.; Van Der Putten, R.; Evans, G.T.; Francis, J.D.; Casella, P.; Hansen, J.D. Determining geophysical responses from burials in graveyards and cemeteries. Geophysics 2017, 82, B245–B255. [Google Scholar] [CrossRef] [Green Version]
- Bottacchi, M.C.; Colonna, T.; Mantovani, F.; Medri, M. Application of the OhmMapper resistivity-meter to detect the theatre of Sentinum Roman town by using 3D resistivity model. ArcheoSciences Rev. Archéométrie 2009, 33, 267–269. [Google Scholar] [CrossRef] [Green Version]
- Sapia, V.; Florindo, F.; Marchetti, M.; Di Nezza, M. Fast geophysical prospection to map the archaeological site of Cocciano: Preliminary results. Ann. Geophys. 2017, 60. [Google Scholar] [CrossRef] [Green Version]
- Sapia, V.; Baccheschi, P.; Villani, F.; Taroni, M.; Marchetti, M. Multidisciplinary geophysical approach to map a disposal site: The Ponza island case study. J. Appl. Geophys. 2017, 138, 264–274. [Google Scholar] [CrossRef]
- Haslam, R.; Tibbett, M. Sampling and analyzing metals in soils for archaeological prospection: A critique. Geoarchaeology 2004, 19, 731–751. [Google Scholar] [CrossRef]
- Linderholm, J. Soil chemical surveying: A path to a deeper understanding of prehistoric sites and societies in Sweden. Geoarchaeology 2007, 22, 417–438. [Google Scholar] [CrossRef]
- Entwistle, J.A.; Abrahams, P.W.; Dodgshon, R.A. The geoarchaeological significance and spatial variability of a range of physical and chemical soil properties from a former habitation site, Isle of Skye. J. Archaeol. Sci. 2000, 27, 287–303. [Google Scholar] [CrossRef]
- Parnell, J.J.; Terry, R.E.; Nelson, Z. Soil chemical analysis applied as an interpretive tool for ancient human activities at Piedras Negras, Guatemala. J. Archaeol. Sci. 2002, 29, 379–404. [Google Scholar] [CrossRef]
- Middleton, W.D. Identifying chemical activity residues on prehistoric house floors: A methodology and rationale for multi-elemental characterization of mild acid extract of anthropogenic sediments. Archaeometry 2004, 46, 47–65. [Google Scholar] [CrossRef]
- Lucchetti, C. Valutazione dell’Influenza di Cavità Sotterranee e Campi di Fratturazione Sulle Concentrazioni di Radon e Thoron nel Suolo in Aree Idrotermali e Peri-Vulcaniche della Regione Lazio. Ph.D. Thesis, Università Degli Studi Roma Tre, Rome, Italy, 2014. [Google Scholar]
- Oonk, S.; Slomp, C.P.; Huisman, D.J. Geochemistry as an aid in archaeological prospection and site interpretation: Current issues and research directions. Archaeol. Prospect. 2009, 16, 35–51. [Google Scholar] [CrossRef]
- Manca, F.; Viaroli, S.; Mazza, R. Hydrogeology of the Sabatini Volcanic District (Central Italy). J. Maps 2017, 13, 252–259. [Google Scholar] [CrossRef]
- Tamburini, P. Etruschi e Romani nel Territorio di Grotte di Castro. In Grotte di Castro: Il Territorio, Il Paese, Il Museo; Città di Bolsena: Bolsena, Italy, 2007; pp. 13–65. [Google Scholar]
- Moffat, I. Isotope Geochemistry in Archaeology. In Encyclopedia of Global Archaeology; Springer: New York, NY, USA, 2014; pp. 4106–4110. [Google Scholar]
- Pelagotti, A.; Uccheddu, F.; Nex, F.; Remondino, F.; Chisari, L. Automatic graves’ orientation detection: A tool for spatial archeology. In Proceedings of the 8th International Symposium on Image and Signal Processing and Analysis, Trieste, Italy, 4–6 September 2013; pp. 582–587. [Google Scholar]
- Yuan, B.; Liu, S.; Lu, G. An integrated geophysical and archaeological investigation of the emperor Qin Shi Huang mausoleum. J. Environ. Eng. Geophys. 2006, 11, 73–81. [Google Scholar] [CrossRef]
- Kovler, K. Radioactive materials. In Toxicity of Building Materials; Pacheco-Torgal, F., Jalali, S., Fucic, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Gundersen, L.C.; Wanty, R.B. Field Studies of Radon in Rocks, Soils, and Water, 1st ed.; United States Geological Survey: Alexandria, VA, USA, 1991. [Google Scholar]
- Urbini, S.; Cafarella, L.; Marchetti, M.; Chiarucci, P.; Bonini, D. Fast geophysical prospecting applied to archaeology: Results at Villa ai Cavallacci (Albano Laziale, Rome) site. Ann. Geophys. 2007, 50, 291–299. [Google Scholar]
- ISPRA. La Geologia di Roma: Dal Centro Storico alla Periferia; ISPRA: Rome, Italy, 2008; Volume 80. [Google Scholar]
- Acocella, V.; Palladino, D.M.; Cioni, R.; Russo, P.; Simei, S. Caldera structure, amount of collapse, and erupted volumes: The case of the Bolsena caldera, Italy. Geol. Soc. Am. Bull. 2012, 124, 1562–1576. [Google Scholar] [CrossRef]
- Peccerillo, A. Cenozoic Volcanism in the Tyrrhenian Sea Region, 1st ed.; Advances in Volcanology; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Salamone, F. La Civita di Grotte di Castro. Carta Archeologica. 2011. Available online: https://www.academia.edu/12960384/La_Civita_di_Grotte_di_Castro_Carta_archeologica (accessed on 25 July 2021).
- Groom, D. Common misconceptions about capacitively-coupled resistivity (CCR), what it is and how it works. In 21st Symposium on the Application of Geophysics to Engineering and Environmental Problems; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2008; p. 177. [Google Scholar]
- Timofeev, V.M. The Employment of Capacitively-Coupled Sensors in Engineering and Geological Studies. Ph.D. Thesis, University of Moscow, Moscow, Russia, 1974. [Google Scholar]
- Kuras, O.; Beamish, D.; Meldrum, P.I.; Ogilvy, R.D. Fundamentals of the capacitive resistivity technique. Geophysics 2006, 71, G135–G152. [Google Scholar] [CrossRef] [Green Version]
- Loke, M.H.; Barker, R. Rapid least-squares inversion of apparent resistivity pseudo-sections using a quasi-Newton method. Geophys. Prospect. 1996, 44, 131–152. [Google Scholar] [CrossRef]
- Annan, A.P.; Davis, J.L. Radar range analysis for geological materials. Geol. Surv. Can. 1977, 77, 117–124. [Google Scholar]
- Grimm, R.E.; Heggy, E.; Clifford, S.; Dinwiddie, C.; McGinnis, R.; Farrell, D. Absorption and scattering in ground-penetrating radar: Analysis of the Bishop Tuff. J. Geophys. Res. Planet 2006, 111, E06. [Google Scholar] [CrossRef] [Green Version]
- Heggy, E.; Clifford, S.M.; Grimm, R.E.; Dinwiddie, C.L.; Wyrick, D.Y.; Hill, B.E. Ground-penetrating radar sounding in mafic lava flows: Assessing attenuation and scattering losses in Mars-analog volcanic terrains. J. Geophys. Res. Planet 2006, 111, E6. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.A.; Friedman, S.P. A method for measuring the solid particle permittivity or electrical conductivity of rocks, sediments, and granular materials. J. Geophys. Res. Solid Earth 2003, 108, B2. [Google Scholar] [CrossRef] [Green Version]
- Ghezzi, A.; Schettino, A.; Pierantoni, P.P.; Conyers, L.; Tassi, L.; Vigliotti, L.; Vigliotti, L.; Schettino, E.; Melfi, M.; Gorrini, A.E.; et al. Reconstruction of a Segment of the UNESCO World Heritage Hadrian’s Villa Tunnel Network by Integrated GPR, Magnetic–Paleomagnetic, and Electric Resistivity Prospections. Remote Sens. 2019, 11, 1739. [Google Scholar] [CrossRef] [Green Version]
- Voltattorni, N.; Quattrocchi, F.; Gasparini, A.; Sciarra, A. Soil gas degassing during the 2009 L’Aquila earthquake: Study of the seismotectonic and fluid geochemistry relation. Ital. J. Geosci. 2012, 131, 440–447. [Google Scholar]
- Sinclair, A.J. A fundamental approach to threshold estimation in exploration geochemistry: Probability plots revisited. J. Geochem. Explor. 1991, 41, 1–22. [Google Scholar] [CrossRef]
- Harris, J.R.; Viljoen, D.W.; Rencz, A.N. Integration and visualization of geoscience data. In Remote Sensing for the Earth Sciences; John Wiley & Sons: Hoboken, NJ, USA, 1999; Volume 3, pp. 307–354. [Google Scholar]
- Oldenborger, G.A.; LeBlanc, A.M. Geophysical characterization of permafrost terrain at Iqaluit International Airport, Nunavut. J. Appl. Geophys. 2015, 123, 36–49. [Google Scholar] [CrossRef]
- McNeill, J.D. Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers; Geonics Limited Technical Note, TN-6; Geonics Limited: Mississauga, ON, Canada, 1980; pp. 6–15. [Google Scholar]
- Oldenborger, G.A.; LeBlanc, A.M. Capacitive resistivity inversion using effective dipole lengths for line antennas. J. Appl. Geophys. 2013, 98, 229–236. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapia, V.; Materni, V.; Florindo, F.; Marchetti, M.; Gasparini, A.; Voltattorni, N.; Civico, R.; Giannattasio, F.; Miconi, L.; Marabottini, M.F.; et al. Multi-Parametric Imaging of Etruscan Chamber Tombs: Grotte Di Castro Case Study (Italy). Appl. Sci. 2021, 11, 7875. https://doi.org/10.3390/app11177875
Sapia V, Materni V, Florindo F, Marchetti M, Gasparini A, Voltattorni N, Civico R, Giannattasio F, Miconi L, Marabottini MF, et al. Multi-Parametric Imaging of Etruscan Chamber Tombs: Grotte Di Castro Case Study (Italy). Applied Sciences. 2021; 11(17):7875. https://doi.org/10.3390/app11177875
Chicago/Turabian StyleSapia, Vincenzo, Valerio Materni, Federico Florindo, Marco Marchetti, Andrea Gasparini, Nunzia Voltattorni, Riccardo Civico, Fabio Giannattasio, Luca Miconi, Maria Flavia Marabottini, and et al. 2021. "Multi-Parametric Imaging of Etruscan Chamber Tombs: Grotte Di Castro Case Study (Italy)" Applied Sciences 11, no. 17: 7875. https://doi.org/10.3390/app11177875
APA StyleSapia, V., Materni, V., Florindo, F., Marchetti, M., Gasparini, A., Voltattorni, N., Civico, R., Giannattasio, F., Miconi, L., Marabottini, M. F., & Urbini, S. (2021). Multi-Parametric Imaging of Etruscan Chamber Tombs: Grotte Di Castro Case Study (Italy). Applied Sciences, 11(17), 7875. https://doi.org/10.3390/app11177875