Nickel (Ni2+) Removal from Water Using Gellan Gum–Sand Mixture as a Filter Material
Abstract
:1. Introduction
2. Materials and Experimental Preparation
2.1. Materials
2.1.1. Sand (Jumunjin Sand)
2.1.2. GG Biopolymer
2.1.3. GG-Treated Sand: Hydraulic Barrier Liner
2.2. Experimental Process
2.2.1. Upward Flow System
2.2.2. Adsorbate Preparation
2.2.3. Adsorption Isotherm and Kinetic Study
2.2.4. Adsorption Isotherm and Kinetic Study
Hydraulic Conductivity Analysis
Nickel Analysis
Surface Morphology
3. Results and Analysis
3.1. Isotherm and Kinetics of Heavy Metal Adsorption Mechanism
3.2. Isotherm and Kinetics of Ni2+ Adsorption Mechanism Control
3.3. Nickel Adsorption Behavior of Soil Column
4. Discussion
5. Conclusions
- GG can improve the Ni2+ adsorption of sand by 150% or greater with the usage of 1% GG content or higher. The Langmuir model is the best fitting model for adsorption data of GG and sand. The potassium content within the GG mainly works on the cation exchange mechanism along with functional groups to interact with Ni2+.
- GG enhances the Ni2+ removal efficiency of the sand column, controlled by GG content, and the flow rate via the interactions of water–GG, Ni2+–GG, and Ni2+–sand.
- The water absorption of GG causes the pore-clogging effect within the GG–sand system and, in turn, improves the Ni2+ removal efficiency. The pore-clogging effect was observed earlier in the process with an increase in the GG concentration.
- In general, GG shows a good performance for Ni2+ adsorption and pore-clogging effect, which controls the movement of flow rate and the amount of Ni2+ ion in the flow. Therefore, GG poses a promising alternative for hydraulic barriers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelly, J.; Thornton, I.; Simpson, P. Urban geochemistry: A study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and non-industrial areas of Britain. Appl. Geochem. 1996, 11, 363–370. [Google Scholar] [CrossRef]
- Radziemska, M.; Mazurb, Z.; Jeznacha, J. Influence of applying halloysite and zeolite to soil contaminated with nickel on the content of selected elements in Maize (Zea mays L.). Chem. Eng. 2013, 32, 301–306. [Google Scholar] [CrossRef]
- Balkaya, M. Evaluation of the use of alum sludge as hydraulic barrier layer and daily cover material in landfills: A finite element analysis study. Desalin. Water Treat. 2016, 57, 2400–2412. [Google Scholar] [CrossRef]
- Prashanth, J.P.; Sivapullaiah, P.V.; Sridharan, A. Pozzolanic fly ash as a hydraulic barrier in land fills. Eng. Geol. 2001, 60, 245–252. [Google Scholar] [CrossRef]
- Bassi, R.; Prasher, S.O.; Simpson, B. Removal of selected metal ions from aqueous solutions using chitosan flakes. Sep. Sci. Technol. 2000, 35, 547–560. [Google Scholar] [CrossRef]
- Lázaro, N.; Sevilla, A.L.; Morales, S.; Marqués, A.M. Heavy metal biosorption by gellan gum gel beads. Water Res. 2003, 37, 2118–2126. [Google Scholar] [CrossRef]
- Mogollon, L.; Rodriguez, R.; Larrota, W.; Ramirez, N.; Torres, R. Biosorption of nickel using filamentous fungi. In Biotechnology for Fuels and Chemicals; Humana Press: Totowa, NJ, USA, 1998; pp. 593–601. [Google Scholar]
- Zhang, L.; Zeng, Y.; Cheng, Z. Removal of heavy metal ions using chitosan and modified chitosan: A review. J. Mol. Liq. 2016, 214, 175–191. [Google Scholar] [CrossRef]
- Chang, I.; Im, J.; Cho, G.-C. Geotechnical engineering behaviors of gellan gum biopolymer treated sand. Can. Geotech. J. 2016, 53, 1658–1670. [Google Scholar] [CrossRef] [Green Version]
- Bouazza, A.; Gates, W.; Ranjith, P. Hydraulic conductivity of biopolymer-treated silty sand. Géotechnique 2009, 59, 71–72. [Google Scholar] [CrossRef]
- Fourest, E.; Volesky, B. Alginate properties and heavy metal biosorption by marine algae. Appl. Biochem. Biotechnol. 1997, 67, 215–226. [Google Scholar] [CrossRef]
- Mani, S.; Khabaz, F.; Godbole, R.V.; Hedden, R.C.; Khare, R. Structure and hydrogen bonding of water in polyacrylate gels: Effects of polymer hydrophilicity and water concentration. J. Phys. Chem. B 2015, 119, 15381–15393. [Google Scholar] [CrossRef] [PubMed]
- Aal, G.Z.A.; Atekwana, E.A.; Atekwana, E.A. Effect of bioclogging in porous media on complex conductivity signatures. J. Geophys. Res. Biogeosci. 2010, 115, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Chang, I.; Cho, G.-C. Shear strength behavior and parameters of microbial gellan gum-treated soils: From sand to clay. Acta Geotech. 2019, 14, 361–375. [Google Scholar] [CrossRef]
- Staerkjaer, L.; Menné, T. Nickel allergy and orthodontic treatment. Eur. J. Orthod. 1990, 12, 284–289. [Google Scholar] [CrossRef]
- Wong, S.; Fournier, M.; Coderre, D.; Banska, W.; Krzystyniak, K. Environmental immunotoxicology. In Animal Biomarkers as Pollution Indicators; Springer: Dordrecht, The Netherlands, 1992; pp. 167–189. [Google Scholar]
- World Health Organization; International Agency for Research on Cancer. Tobacco Smoke and Involuntary Smoking; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Osmałek, T.; Froelich, A.; Tasarek, S. Application of gellan gum in pharmacy and medicine. Int. J. Pharm. 2014, 466, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Rathor, G.; Chopra, N.; Adhikari, T. Nickel as a pollutant and its management. Int. Res. J. Environ. Sci. 2014, 3, 94–98. [Google Scholar]
- Krishnan, K.A.; Sreejalekshmi, K.; Baiju, R. Nickel (II) adsorption onto biomass based activated carbon obtained from sugarcane bagasse pith. Bioresour. Technol. 2011, 102, 10239–10247. [Google Scholar] [CrossRef]
- Panda, G.; Das, S.; Bandopadhyay, T.; Guha, A. Adsorption of nickel on husk of Lathyrus sativus: Behavior and binding mechanism. Colloids Surf. B Biointerfaces 2007, 57, 135–142. [Google Scholar] [CrossRef]
- Huang, C.; Chung, Y.-C.; Liou, M.-R. Adsorption of Cu (II) and Ni (II) by pelletized biopolymer. J. Hazard. Mater. 1996, 45, 265–277. [Google Scholar] [CrossRef]
- Stojakovic, D.; Milenkovic, J.; Daneu, N.; Rajic, N. A study of the removal of copper ions from aqueous solution using clinoptilolite from Serbia. Clays Clay Miner. 2011, 59, 277–285. [Google Scholar] [CrossRef]
- Panda, G.; Das, S.; Chatterjee, S.; Maity, P.; Bandopadhyay, T.; Guha, A. Adsorption of cadmium on husk of Lathyrus sativus: Physico-chemical study. Colloids Surf. B Biointerfaces 2006, 50, 49–54. [Google Scholar] [CrossRef]
- Kawahara, S.; Yoshikawa, A.; Hiraoki, T.; Tsutsumi, A. Interactions of paramagnetic metal ions with gellan gum studied by ESR and NMR methods. Carbohydr. Polym. 1996, 30, 129–133. [Google Scholar] [CrossRef]
- Tsutsumi, A.; Ya, D.; Hiraoki, T.; Mochiku, H.; Yamaguchi, R.; Takahashi, N. ESR studies of Mn (II) binding to gellan and carrageenan gels. Food Hydrocoll. 1993, 7, 427–434. [Google Scholar] [CrossRef]
- Awan, M.A.; Qazi, I.A.; Khalid, I. Removal of heavy metals through adsorption using sand. J. Environ. Sci. 2003, 15, 413–416. [Google Scholar]
- Takahashi, N.; Kuroda, K. Materials design of layered silicates through covalent modification of interlayer surfaces. J. Mater. Chem. 2011, 21, 14336–14353. [Google Scholar] [CrossRef]
- Karube, D.; Kawai, K. The role of pore water in the mechanical behavior of unsaturated soils. Geotech. Geol. Eng. 2001, 19, 211–241. [Google Scholar] [CrossRef]
- Di Emidio, G.; Mazzieri, F.; Verastegui-Flores, R.D.; Van Impe, W.; Bezuijen, A. Polymer-treated bentonite clay for chemical-resistant geosynthetic clay liners. Geosynth. Int. 2015, 22, 125–137. [Google Scholar] [CrossRef]
- Mohajeri, P.; Smith, C.; Selamat, M.; Abdul Aziz, H. Enhancing the Adsorption of Lead (II) by Bentonite Enriched with pH-Adjusted Meranti Sawdust. Water 2018, 10, 1875. [Google Scholar] [CrossRef] [Green Version]
- Adamis, Z.; Fodor, J.; Williams, R. Environmental Health Criteria 231: Bentonite, Kaolin and Selected Clay Minerals; World Health Organization, International Programme on Chemical Safety: Geneva, Switzerland, 2005. [Google Scholar]
- Geh, S.; Shi, T.; Shokouhi, B.; Schins, R.P.; Armbruster, L.; Rettenmeier, A.W.; Dopp, E. Genotoxic potential of respirable bentonite particles with different quartz contents and chemical modifications in human lung fibroblasts. Inhal. Toxicol. 2006, 18, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, A.; Pooley, F. Fuller’s earth (montmorillonite) pneumoconiosis. Occup. Environ. Med. 1994, 51, 644–646. [Google Scholar] [CrossRef]
- Alkaya, D.; Esener, A.B. Usability of sand-bentonite-cement mixture in the construction of unpermeable layer. Sci. Res. Essays 2011, 6, 4492–4503. [Google Scholar] [CrossRef] [Green Version]
- Sigma-Aldrich. Gelzan™ CM. Available online: https://www.sigmaaldrich.com/catalog/search?term=gellan+gum&interface=All&N=0&mode=partialmax&lang=ko®ion=KR&focus=product (accessed on 29 April 2019).
- Statista. Average Bentonite Price in the U.S. from 2007 to 2018. Available online: https://www.statista.com/statistics/248186/average-bentonite-price/ (accessed on 29 April 2019).
GG Content [%] | 0.0 | 0.5 | 1.0 | 2.0 |
Symbol | 0.0 HBL | 0.5 HBL | 1.0 HBL | 2.0 HBL |
Dry density [g/cm3] | 1.61 | 1.57 | 1.54 | 1.53 |
Flow Rate [mL/min] | Thickness of HBL [cm] | GG Contents [%] | |||
---|---|---|---|---|---|
0.04 | 5 | 0 | 0.5 | 1.0 | 2.0 |
0.20 |
Parameters | 0 HBL | 0.5 HBL | 1.0 HBL | 2.0 HBL |
---|---|---|---|---|
Langmuir isotherm | ||||
qmax | 0.19 | 0.29 | 0.40 | 0.60 |
kL | 0.20 | 0.21 | 0.30 | 0.30 |
R2 | 0.9881 | 0.9983 | 0.9866 | 0.9967 |
Freundlich isotherm | ||||
kF | 0.03 | 0.05 | 0.06 | 0.09 |
N | 2.37 | 2.39 | 2.14 | 2.20 |
R2 | 0.9197 | 0.9188 | 0.782 | 0.8925 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, T.P.A.; Cho, H.; Cho, G.-C.; Han, J.-I.; Chang, I. Nickel (Ni2+) Removal from Water Using Gellan Gum–Sand Mixture as a Filter Material. Appl. Sci. 2021, 11, 7884. https://doi.org/10.3390/app11177884
Tran TPA, Cho H, Cho G-C, Han J-I, Chang I. Nickel (Ni2+) Removal from Water Using Gellan Gum–Sand Mixture as a Filter Material. Applied Sciences. 2021; 11(17):7884. https://doi.org/10.3390/app11177884
Chicago/Turabian StyleTran, Thi Phuong An, Hoon Cho, Gye-Chun Cho, Jong-In Han, and Ilhan Chang. 2021. "Nickel (Ni2+) Removal from Water Using Gellan Gum–Sand Mixture as a Filter Material" Applied Sciences 11, no. 17: 7884. https://doi.org/10.3390/app11177884
APA StyleTran, T. P. A., Cho, H., Cho, G. -C., Han, J. -I., & Chang, I. (2021). Nickel (Ni2+) Removal from Water Using Gellan Gum–Sand Mixture as a Filter Material. Applied Sciences, 11(17), 7884. https://doi.org/10.3390/app11177884