Compositional Modeling of Impure CO2 Injection for Enhanced Oil Recovery and CO2 Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fluid Modeling
2.2. Minimum Miscibility Pressure (MMP)
2.3. Evaluation of CO2 Streams
2.4. Solubility
2.5. Reservoir Modeling
3. Results
3.1. Physical Properties of Impure Gas
MMP, Density, and Viscosity
3.2. Effects of Impurities in CO2 Streams on EOR Efficiency
3.2.1. Vertical Sweep Efficiency
3.2.2. Displacement Efficiency
3.3. Effects of Impurities in CO2 Streams on Carbon Storage Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gozalpour, F.; Ren, S.R.; Tohidi, B. CO2 EOR and storage in oil reservoir. Oil Gas Sci. Technol. 2005, 60, 537–546. [Google Scholar] [CrossRef] [Green Version]
- Holm, L. Carbon dioxide solvent flooding for increased oil recovery. Trans. AIME 1959, 216, 225–231. [Google Scholar] [CrossRef]
- Terzariol, M.; Goldsztein, G.; Santamarina, J.C. Maximum recoverable gas from hydrate bearing sediments by depressurization. Energy 2017, 141, 1622–1628. [Google Scholar] [CrossRef] [Green Version]
- Kuuskraa, V.A.; Godec, M.L.; Dipietro, P. CO2 utilization from “next generation” CO2 enhanced oil recovery technology. Energy Procedia 2013, 37, 6854–6866. [Google Scholar] [CrossRef]
- IEAGHG. CO2 Storage in Depleted Oilfields: Global Application Criteria for Carbon Dioxide Enhanced Oil Recovery; IEAGHG Publications: Cheltenham, UK, 2009. [Google Scholar]
- Khelifa, T.; Maini, B.B. Evaluation of CO2 based vapex process for the recovery of bitumen from tar sand reservoirs. In Proceedings of the SPE International Improved Oil Recovery Conference in Asia Pacific, Kuala Lumpur, Malaysia, 20–21 October 2003. [Google Scholar]
- Hassanpouryouzband, A.; Joonaki, E.; Edlmann, K.; Haszeldine, R.S. Offshore geological storage of hydrogen: Is this our best option to achieve net-zero? ACS Energy Lett. 2021, 6, 2181–2186. [Google Scholar] [CrossRef]
- Choubineh, A.; Helalizadeh, A.; Wood, D.A. The impacts of gas impurities on the minimum miscibility pressure of injected CO2-rich gas–crude oil systems and enhanced oil recovery potential. Pet. Sci. 2019, 16, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Chapoy, A.; Burgass, R.; Tohidi, B.; Austell, J.M.; Eickhoff, C. Effect of common impurities on the phase behavior of carbon-dioxide-rich systems: Minimizing the risk of hydrate formation and two-phase flow. SPE J. 2011, 16, 921–930. [Google Scholar] [CrossRef]
- Chapoy, A.; Nazeri, M.; Kapateh, M.; Burgass, R.; Coquelet, C.; Tohidi, B. Effect of impurities on thermophysical properties and phase behaviour of a CO2-rich system in CCS. Int. J. Greenh. Gas Control 2013, 19, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Pekot, L.J.; Hawthorne, S.B.; Salako, O.; Peterson, K.J.; Bosshart, N.W.; Jiang, T.; Hamling, J.A.; Gorecki, C.D. Evaluation of recycle gas injection on CO2 enhanced oil recovery and associated storage performance. Int. J. Greenh. Gas Control 2018, 75, 151–161. [Google Scholar] [CrossRef]
- Ziabakhsh-Ganji, Z.; Kooi, H. An equation of state for thermodynamic equilibrium of gas mixtures and brines to allow simulation of the effects of impurities in subsurface CO2 storage. Int. J. Greenh. Gas Control 2012, 11, S21–S34. [Google Scholar] [CrossRef]
- IEAGHG. Effects of Impurities on Geological Storage of CO2; IEAGHG Publications: Cheltenham, UK, 2011. [Google Scholar]
- Kolster, C.; Mechleri, E.; Krevor, S.; Mac Dowell, N. The role of CO2 purification and transport networks in carbon capture and storage cost reduction. Int. J. Greenh. Gas Control 2017, 58, 127–141. [Google Scholar] [CrossRef]
- Bachu, S.; Bennion, D.B. Chromatographic partitioning of impurities contained in a CO2 stream injected into a deep saline aquifer: Part 1. Effects of gas composition and in situ conditions. Int. J. Greenh. Gas Control 2009, 3, 458–467. [Google Scholar] [CrossRef]
- Wilkinson, J.R.; Leahy-Dios, A.; Teletzke, G.F.; Dickson, J.L. Use of CO2 containing impurities for miscible enhanced oil recovery. In Proceedings of the International Oil and Gas Conference and Exhibition in China, Beijing, China, 8–10 June 2010. [Google Scholar]
- Savary, V.; Berger, G.; Dubois, M.; Lacharpagne, J.; Pages, A.; Thibeau, S.; Lescanne, M. The solubility of CO2 + H2S mixtures in water and 2 M NaCl at 120 °C and pressures up to 35 MPa. Int. J. Greenh. Gas Control 2012, 10, 123–133. [Google Scholar] [CrossRef]
- Shabani, B.; Vilcáez, J. Prediction of CO2-CH4-H2S-N2 gas mixtures solubility in brine using a non-iterative fugacity-activity model relevant to CO2-MEOR. J. Pet. Sci. Eng. 2017, 150, 162–179. [Google Scholar] [CrossRef]
- Dhima, A.; de Hemptinne, J.; Jose, J. Solubility of hydrocarbons and CO2 mixtures in water under high pressure. Ind. Eng. Chem. Res. 1999, 38, 3144–3161. [Google Scholar] [CrossRef]
- Zhang, P.Y.; Huang, S.; Sayegh, S.; Zhou, X.L. Effect of CO2 impurities on gas-injection EOR processes. In Proceedings of the SPE/DOE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 17–21 April 2004. [Google Scholar]
- Luo, E.; Hu, Y.; Wang, J.; Fan, Z.; Hou, Q.; Ma, L.; Dai, S. The effect of impurity on miscible CO2 displacement mechanism. Oil Gas Sci. Technol.–Revue d’IFP Energ. Nouv. 2019, 74, 1–20. [Google Scholar] [CrossRef]
- Sayegh, S.; Huang, S.; Zhang, Y.; Lavoie, R. Effect of H2S and pressure depletion on the CO2 MMP of Zama Oils. J. Can. Pet. Technol. 2007, 46, 34–41. [Google Scholar] [CrossRef]
- Blanco, S.T.; Rivas, C.; Fernández, J.; Artal, M.; Velasco, I. Influence of methane in CO2 transport and storage for CCS technology. Environ. Sci. Technol. 2012, 46, 13016–13023. [Google Scholar] [CrossRef]
- Ren, Q.; Chen, G.; Yan, W.; Guo, T. Interfacial tension of (CO2+ CH4)+ water from 298 K to 373 K and pressures up to 30 MPa. J. Chem. Eng. Data 2000, 45, 610–612. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Huang, S.S.; Dong, M. Laboratory investigation of Weyburn CO2 miscible flooding. J. Can. Pet. Technol. 2000, 39, 41–51. [Google Scholar] [CrossRef]
- Peng, D.Y.; Robinson, D.B. A new two-constant equation of state. Ind. Eng. Chem. Fundam. 1976, 15, 59–64. [Google Scholar] [CrossRef]
- Robinson, D.B.; Peng, D.-Y. The Characterization of the Heptanes and Heavier Fractions for the GPA Peng-Robinson Programs; Research Report 28; Gas Processors Association: Tulsa, OK, USA, 1978. [Google Scholar]
- Dennis Jr, J.E.; Gay, D.M.; Walsh, R.E. An adaptive nonlinear least-squares algorithm. ACM Trans. Math. Softw. (TOMS) 1981, 7, 348–368. [Google Scholar] [CrossRef]
- Yellig, W.F.; Metcalfe, R.S. Determination and prediction of CO2 minimum miscibility pressures (includes associated paper 8876). J. Pet. Technol. 1980, 32, 160–168. [Google Scholar] [CrossRef]
- Elsharkawy, A.M.; Poettmann, F.H.; Christiansen, R.L. Measuring CO2 minimum miscibility pressures: Slim-tube or rising-bubble method? Energy Fuels 1996, 10, 443–449. [Google Scholar] [CrossRef]
- Dong, M.; Huang, S.; Dyer, S.B.; Mourits, F.M. A comparison of CO2 minimum miscibility pressure determinations for Weyburn crude oil. J. Pet. Sci. Eng. 2001, 31, 13–22. [Google Scholar] [CrossRef]
- Ayirala, S.C.; Rao, D.N. Comparative evaluation of a new gas/oil miscibility-determination technique. J. Can. Pet. Technol. 2011, 50, 71–81. [Google Scholar] [CrossRef]
- Zhang, K.; Gu, Y. Two different technical criteria for determining the minimum miscibility pressures (MMPs) from the slim-tube and coreflood tests. Fuel 2015, 161, 146–156. [Google Scholar] [CrossRef]
- Ahmad, W.; Vakili-Nezhaad, G.; Al-Bemani, A.S.; Al-Wahaibi, Y. Uniqueness, repeatability analysis and comparative evaluation of experimentally determined MMPs. J. Pet. Sci. Eng. 2016, 147, 218–227. [Google Scholar] [CrossRef]
- Vulin, D.; Gaćina, M.; Biličić, V. Slim-tube simulation model for CO2 injection EOR. Rudarsko-Geološko-Naftni Zbornik 2018, 33, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.K.; Nghiem, L.X. Phase equilibria of oil, gas and water/brine mixtures from a cubic equation of state and Henry’s law. Can. J. Chem. Eng. 1986, 64, 486–496. [Google Scholar] [CrossRef]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 126. [Google Scholar]
- Lake, L.W. Enhanced Oil Recovery; Prentice-Hall: Hoboken, NJ, USA, 1989. [Google Scholar]
- Chugh, S.; Baker, R.; Cooper, L.; Spence, S. Simulation of horizontal wells to mitigate miscible solvent gravity override in the Virginia Hills Margin. J. Can. Pet. Technol. 2000, 39, 28–34. [Google Scholar] [CrossRef]
Component | Composition | Critical Pressure (kPa) | Critical Temperature (K) | Molecular Weight (g/gmol) | Acentric Factor | Parachor |
---|---|---|---|---|---|---|
N2 | 0.0207 | 3394.4 | 126.2 | 28.0 | 0.04 | 41 |
CO2 | 0.0074 | 7376.5 | 304.2 | 44.0 | 0.23 | 78 |
H2S | 0.0012 | 8936.9 | 373.2 | 34.1 | 0.1 | 80 |
Methane, C1 | 0.0749 | 4600.2 | 190.6 | 16.0 | 0.01 | 77 |
Ethane, C2 | 0.0422 | 4883.9 | 305.4 | 30.1 | 0.1 | 108 |
Propane, C3 | 0.0785 | 4245.5 | 369.8 | 44.1 | 0.15 | 150 |
Butane, C4 | 0.0655 | 3722.7 | 416.5 | 58.1 | 0.19 | 186 |
Pentane, C5 | 0.0459 | 3379.4 | 464.9 | 72.1 | 0.24 | 228 |
C6–9 | 0.2156 | 3019.6 | 556.3 | 102.5 | 0.33 | 297 |
C10–17 | 0.2202 | 2017.5 | 692.2 | 184.0 | 0.58 | 508 |
C18–27 | 0.1027 | 1327.0 | 808.4 | 306.2 | 0.89 | 771 |
C28+ | 0.1252 | 1155.1 | 915.5 | 566 | 1.1 | 1112 |
Dissolved Gas Mole Fraction | Saturation Pressure (MPa) | GOR (sm3/m3) | Gas Solubility (sm3/m3) | FVF (m3/m3) | SF (m3/m3) |
---|---|---|---|---|---|
0.0058 | 2.9 | 19 | 0 | 1.087 | 1.074 |
0.158 | 4.5 | 42 | 23 | 1.143 | 1.13 |
0.412 | 8 | 113 | 94 | 1.308 | 1.292 |
0.439 | 8.4 | 125 | 106 | 1.336 | 1.32 |
0.521 | 9.9 | 158 | 139 | 1.409 | 1.392 |
0.595 | 11.4 | 221 | 202 | 1.546 | 1.527 |
0.641 | 12.6 | 263 | 244 | 1.634 | 1.614 |
0.826 | 19.7 | 875 | 856 | 2.694 | 2.668 |
Parameters | W3 | Fluid Model | Difference (%) |
---|---|---|---|
Oil density at saturation pressure (kg/m3) | 806.4 | 805.7 | 0.09 |
Saturation pressure (kPa) | 4920 | 4916 | 0.08 |
Viscosity at saturation pressure (mPa·s) | 1.76 | 1.76 | 0.0 |
Formation volume factor (m3/m3) | 1.12 | 1.108 | 1.07 |
API (°) | 31 | 34.48 | −11.23 |
MMP with CO2 (kPa) | 14,196 | 13,900 | 2.09 |
Oxy-Fuel Combustion | Pre- Combustion | Post- Combustion | |||
---|---|---|---|---|---|
Raw/ Dehumidified | Double Flashing | Distillation | |||
CO2 (% v/v) | 74.8–85.0 | 95.84–96.7 | 99.3–99.4 | 95–99 | 99.6–99.8 |
O2 (% v/v) | 3.21–6.0 | 1.05–1.2 | 0.01–0.4 | 0 | 0.015–0.0035 |
N2 (% v/v) | 5.80–16.6 | 1.6–2.03 | 0.01–0.2 | 0.0195–1 | 0.045–0.29 |
Ar (% v/v) | 2.3–4.47 | 0.4–0.61 | 0.01–0.1 | 0.0001–0.15 | 0.0011–0.021 |
NOx (ppmv) | 100–709 | 0–150 | 33–100 | 400 | 20–38.8 |
SO2 (ppmv) | 50–800 | 0–4500 | 37–50 | 25 | 0–67.1 |
SO3 (ppmv) | 20 | 20 | |||
H2O (ppmv) | 100–1000 | 0 | 0–100 | 0.1–600 | 100–640 |
CO (ppmv) | 50 | 50 | 0–2000 | 1.2–10 | |
H2S/COS (ppmv) | 0.2–34,000 | ||||
H2 (ppmv) | 20–30,000 | ||||
CH4 (ppmv) | 0–112 |
Components | Low Purity Level Oxy-Fuel Stream |
---|---|
CO2 (vol%) | 85.0 |
O2 (vol%) | 4.70 |
N2 (vol%) | 5.80 |
Ar (vol%) | 4.47 |
H2O (ppmv) | 100 |
NOx (ppmv) | 100 |
SO2 (ppmv) | 50 |
SO3 (ppmv) | 20 |
CO (ppmv) | 50 |
Case | Injection Gas Contents |
---|---|
1 | 100% CO2 + 0% Impurities |
2 | 75% CO2 + 15% Impurities |
Parameters | Values |
---|---|
Depth (ft) | 4050 |
Initial reservoir pressure (psi) | 4000 |
Reservoir temperature (°F) | 145 |
Permeability in I, J, K-direction (md) | 50, 50, 5 |
Porosity (%) | 0.3 |
Initial oil saturation (%) | 0.7 |
Initial water saturation (%) | 0.3 |
Producing bottom hole pressure (psi) | 2000 |
Components | MMP (kPa) |
---|---|
CO2 100% | 13,900 |
CO2 90% + CH4 10% | 18,616 |
CO2 90% + H2 10% | 16,079 |
CO2 90% + N2 10% | 18,933 |
CO2 90% + O2 10% | 14,555 |
CO2 90% + Ar 10% | 18,650 |
CO2 90% + H2S 10% | 12,714 |
Case 1 | Case 2 | |
---|---|---|
Minimum Miscibility Pressure (kPa) | 13,900 | 19,927 |
Density (kg/m3) | 689 | 552 |
Viscosity (mPa·s) | 0.0702 | 0.0493 |
Model | |
---|---|
Case 1 | 2.1 |
Case 2 | 5.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-S.; Cho, J.; Lee, Y.-W.; Lee, K.-S. Compositional Modeling of Impure CO2 Injection for Enhanced Oil Recovery and CO2 Storage. Appl. Sci. 2021, 11, 7907. https://doi.org/10.3390/app11177907
Lee H-S, Cho J, Lee Y-W, Lee K-S. Compositional Modeling of Impure CO2 Injection for Enhanced Oil Recovery and CO2 Storage. Applied Sciences. 2021; 11(17):7907. https://doi.org/10.3390/app11177907
Chicago/Turabian StyleLee, Hye-Seung, Jinhyung Cho, Young-Woo Lee, and Kun-Sang Lee. 2021. "Compositional Modeling of Impure CO2 Injection for Enhanced Oil Recovery and CO2 Storage" Applied Sciences 11, no. 17: 7907. https://doi.org/10.3390/app11177907
APA StyleLee, H. -S., Cho, J., Lee, Y. -W., & Lee, K. -S. (2021). Compositional Modeling of Impure CO2 Injection for Enhanced Oil Recovery and CO2 Storage. Applied Sciences, 11(17), 7907. https://doi.org/10.3390/app11177907