Model of Raw Material Exploitation for the Support of Sustainable Development
Abstract
:1. Introduction
2. Materials and Methods
- f—number of factors,
- Sij—single factors.
- Flexibility, simplicity, and logical conciseness,
- Separation of a complex problem into smaller problems,
- Evaluation of problems by experts affecting the decision-making criteria.
3. Results
- I1—impact on the inhabitants’ health.
- I2—impact on the natural environment (synergistic effect).
- I3—impact on the spheres of the Earth.
- I4—impact on the climatic conditions.
- I5—impact on the air.
- I6—impact on the hydrogeological conditions.
- I7—impact on the fauna.
- I8—impact on the flora.
- I9—impact on the protected areas in accord with valid legislative.
- I10—impact on the local system of ecological stability.
- I11—impact on the country and esthetical shape of natural environment.
- I12—impact on the municipality complex.
- I13—production of mining waste that is classified in accord with valid legislation as dangerous waste.
- I14—heaps, ponds, or old mining works that are, in accord with valid legislation, identified as environmental burdens.
- I1—increase of GDP per inhabitant.
- I2—support of social development.
- I3—employment increasing.
- I4—source of money for the state budget.
- I5—impact on the trade with RM.
- I6—increased autonomy for SR.
- I7—foreign direct investment (FDI) possibilities.
- I8—support of regional development.
- I9—positive financial effect for stakeholders.
- I10—increase of purchase power.
- I11—impact on the living standards of inhabitants.
- I12—amount of FDI inflowing.
- I13—increasing of work productivity index.
- I14—increasing of the average wage.
4. Discussion
- Present state of deposit of RM in accordance with applied legislation connected sustainable exploitation of RM in SR.
- Identification of regional development tendencies according chosen relevant indicators.
- Comparison of utility of concrete deposit of RM and its social and economic contributions for the region development.
- Suggestion of the deposit exploitation project according to the needs and specifications of a particular region.
- Identification and evaluation of benefits and barriers, preliminary category of the region support according scoring rate.
- After monitoring of indexes of the regional development by using development activities orientated to the potential of particular RM base exploitation, allocated at the region.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pavolová, H.; Šimková, Z.; Seňová, A.; Wittenberger, G. Macroeconomic indicators of raw material policy in Slovakia. E3S Web Conf. 2019, 134, 03017. [Google Scholar] [CrossRef] [Green Version]
- Šimková, Z.; Grohol, M.; Kubacki, K.; Kapko, M. Assessment of Socio-Economic Impacts of Zeolite Mining to Regional Development—Case Study. E3S Web Conf. 2019, 105, 04009. [Google Scholar] [CrossRef]
- Bian, Z.; Inyang, H.; Daniels, J.L.; Otto, F.; Struther, S. Environmental issues from coal mining and their solutions. Min. Sci. Technol. 2010, 20, 215–223. [Google Scholar] [CrossRef]
- Manhart, A.; Vogt, R.; Priester, M.; Dehoust, G.; Auberger, A.; Blepp, M.; Dolega, P.; Kämper, C.; Giegrich, J.; Schmidt, G.; et al. The environmental criticality of primary raw materials–A new methodology to assess global environmental hazard potentials of minerals and metals from mining. Miner. Econ. 2019, 32, 91–107. [Google Scholar] [CrossRef] [Green Version]
- Kamenopoulos, S.; Agioutantis, Z.; Komnitsas, K. A new hybrid decision support tool for evaluating the sustainability of mining projects. Int. J. Min. Sci. Technol. 2018, 28, 259–265. [Google Scholar] [CrossRef]
- Carvalho, F.P. Mining industry and sustainable development: Time for change. Food Energy Secur. 2017, 6, 61–77. [Google Scholar] [CrossRef]
- Pactwa, K.; Woźniak, J.; Strempski, A. Sustainable mining—Challenge of Polish mines. Resour. Policy 2018, 101269. [Google Scholar] [CrossRef]
- Clauser, N.M.; González, G.; Mendieta, C.M.; Kruyeniski, J.; Area, M.C.; Vallejos, M.E. Biomass Waste as Sustainable Raw Material for Energy and Fuels. Sustainability 2021, 13, 794. [Google Scholar] [CrossRef]
- Bednárová, L.; Džuková, J.; Grosoš, R.; Gomory, M.; Petráš, M. Legislative instruments and their use in the management of raw materials in the Slovak Republic. Acta Montan. Slovaca 2020, 25, 105–115. [Google Scholar]
- Tonts, M.; Martinus, K.; Plummer, P. Regional development, redistribution and the extraction of mineral resources: The Western Australian Goldfields as a resource bank. Appl. Geogr. 2013, 45, 365–374. [Google Scholar] [CrossRef]
- Zawadzka, P. Tax on Extraction of Certain Minerals and the Mining Fee as a Category of Budget Revenue in Poland. In European Financial Law in Times of Crisis of the European Union, 1st ed.; Hulkó, G., Vybíral, R., Eds.; Dialóg Campus: Budapest, Hungary, 2019; pp. 619–627. [Google Scholar]
- Act No. 17/1992 Coll. on the Environment. Available online: https://www.slov-lex.sk/pravne-predpisy/SK/ZZ/1992/17/vyhlasene_znenie.html (accessed on 6 June 2021).
- Raissa, G.; Sihotang, S.; Christy, F.; Wijaya, K. Identification of cultural capital and sustainable behavior towards sustainable development. IOP Conf. Ser. Earth Environ. Sci. 2021, 764, 012015. [Google Scholar] [CrossRef]
- Güney, T. Renewable energy, non-renewable energy and sustainable development. Int. J. Sustain. Dev. World Ecol. 2019, 26, 389–397. [Google Scholar] [CrossRef]
- Khudyakova, T.; Lyaskovskaya, E. Improving the Sustainability of Regional Development in the Context of Waste Management. Sustainability 2021, 13, 1755. [Google Scholar] [CrossRef]
- Pactwa, K. achieving united nations sustainable development goals by the mining sector—A polish example. Gospod. Surowcami Miner. 2021, 37, 57–80. [Google Scholar]
- Pavolová, H.; Csikósová, A.; Bakalár, T. Brownfields as a tool for support of regional development of Slovakia. Appl. Mech. Mater. 2012, 209–211, 1679–1683. [Google Scholar] [CrossRef]
- Pavolová, H.; Bakalár, T.; Emhemed, E.M.A.; Hajduová, Z.; Pafčo, M. Model of sustainable regional development with implementation of brownfield areas. Entrep. Sustain. Issues 2019, 6, 1088–1100. [Google Scholar] [CrossRef] [Green Version]
- Gregorová, B.; Hronček, P.; Tometzová, D.; Molokáč, M.; Čech, V. Transforming Brownfields as Tourism Destinations and Their Sustainability on the Example of Slovakia. Sustainability 2020, 12, 10569. [Google Scholar] [CrossRef]
- Asr, E.T.; Kakaie, R.; Ataei, M.; Mohammadi, M.R.T. A review of studies on sustainable development in mining life cycle. J. Clean. Prod. 2019, 229, 213–231. [Google Scholar] [CrossRef]
- Oláh, J.; Hajduová, Z.; Lacko, R.; Andrejovský, P. Quality of Life Regional Differences: Case of Self-Governing Regions of Slovakia. Sustainability 2020, 12, 2924. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, N.B.R.; da Silva, E.A.; Neto, J.M.M. Sustainable development goals in mining. J. Clean. Prod. 2019, 228, 509–520. [Google Scholar] [CrossRef]
- Bebbington, A.; Bebbington, D.H. Mining, movements and sustainable development: Concepts for a framework. Sustain. Dev. 2018, 26, 441–449. [Google Scholar] [CrossRef]
- Kopacza, M.; Kryzia, D.; Kryzia, K. Assessment of sustainable development of hard coal mining industry in Poland with use of bootstrap sampling and copula-based Monte Carlo simulation. J. Clean. Prod. 2017, 159, 359–373. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process, 1st ed.; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.L. Fundamentals of Decision Making and Priority Theory, 1st ed.; RWS Publications: Pittsburgh, PA, USA, 2000. [Google Scholar]
- Saaty, T.L.; Vargas, L.G. Models, Methods, Concepts & Applications of the Analytic Hierarchy Process, 2nd ed.; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Ignjatović, M.; Miletić, S. Evaluation of the sustainable development benefits in the Serbian mining companies. Min. Metall. Eng. Bor. 2018, 3–4, 87–96. [Google Scholar] [CrossRef]
- Dao, M.T.; Nguyen, A.T.; Nguyen, T.K.; Pham, H.T.T.; Nguyen, D.T.; Tran, Q.T.; Dao, H.G.; Nguyen, D.T.; Dang, H.T.; Hens, L. A Hybrid Approach Using Fuzzy AHP-TOPSIS Assessing Environmental Conflicts in the Titan Mining Industry along Central Coast Vietnam. Appl. Sci. 2019, 9, 2930. [Google Scholar] [CrossRef] [Green Version]
- Spanidis, P.-M.; Roumpos, C.; Pavloudakis, F. A Fuzzy-AHP Methodology for Planning the Risk Management of Natural Hazards in Surface Mining Projects. Sustainability 2021, 13, 2369. [Google Scholar] [CrossRef]
- Kaymaz, Ç.K.; Birinci, S.; Kızılkan, Y. Sustainable development goals assessment of Erzurum province with SWOT-AHP analysis. Environ. Dev. Sustain. 2021. [Google Scholar] [CrossRef]
- Baffoe, G. Exploring the utility of Analytic Hierarchy Process (AHP) in ranking livelihood activities for effective and sustainable rural development interventions in developing countries. Eval. Program. Plann. 2019, 72, 197–204. [Google Scholar] [CrossRef]
- Liu, N. Research on Evaluation of Coal Enterprises Sustainable Development. IOP Conf. Ser. Earth Environ. Sci. 2019, 300, 022003. [Google Scholar] [CrossRef]
- Kwatra, S.; Kumar, A.; Sharma, S.; Sharma, P. Stakeholder participation in prioritizing sustainability issues at regional level using analytic hierarchy process (AHP) technique: A case study of Goa, India. Environ. Sustain. Indic. 2021, 11, 100116. [Google Scholar] [CrossRef]
- Rakhmangulov, A.; Burmistrov, K.; Osintsev, N. Sustainable Open Pit Mining and Technical Systems: Concept, Principles, and Indicators. Sustainability 2021, 13, 1101. [Google Scholar] [CrossRef]
- Reddy, J.K.; Jayakrishna, K.; Aravind Raj, S. Prioritization of Factors Influencing Sustainable Product Design in the Context of Green Consumer Behavior Using Hybrid AHP–ELECTRE II: A Case Study. In Advances in Industrial Automation and Smart Manufacturing, Lecture Notes in Mechanical Engineering, 1st ed.; Arockiarajan, A., Duraiselvam, M., Raju, R., Eds.; Springer: Singapore, 2021. [Google Scholar]
- Ganguly, K.K.; Das, D. Analysing the barriers in Indian stone crushing industries: An ISM and fuzzy AHP approach. Int. J. Appl. Manage. Sci. 2020, 12, 242–264. [Google Scholar] [CrossRef]
- Cebeci, H.İ.; Korkut, Y. Determination of the Critical Success Factors in Disaster Management through the Text Mining Assisted Ahp Approach. Sak. Univ. J. Comput. Inf. Sci. 2021, 4, 50–72. [Google Scholar]
- Yarahmadi, R.; Moridi, H.; Farshad, A.A.; Taheri, F. Weighing and Prioritizing the Eight Principles of Integrated Health, Safety, Environment and Energy Management in Industries Covered by the Ministry of Industry, Mining and Trade. Iran. Occup. Health 2020, 17, 126–135. [Google Scholar]
- Azimifard, A.; Moosavirad, S.H.; Ariafar, S. Selecting sustainable supplier countries for Iran’s steel industry at three levels by using AHP and TOPSIS methods. Resour. Policy 2018, 57, 30–44. [Google Scholar] [CrossRef]
- Goyal, S.; Garg, D.; Luthra, S. An analysis of sustainable production and consumption challenges: Using PEST-AHP approach. Int. J. Logist. Syst. Manag. 2020, 37, 407–426. [Google Scholar]
- Goyal, S.; Garg, D.; Luthra, S. Sustainable production and consumption: Analysing barriers and solutions for maintaining green tomorrow by using fuzzy-AHP–fuzzy-TOPSIS hybrid framework. Environ. Dev. Sustain. 2021. [Google Scholar] [CrossRef]
- Raco, J.R.; Ohoitimur, J.; Krejci, J.V.; Raton, Y.; Rottie, R.; Paseru, D.; Muaja, O.; Rachmadi, R. The dominant factor of lecturers’ research productivity using the AHP: Case study of catholic university of De la Salle Manado-Indonesia. Int. J. Anal. Hierarchy Process. 2020, 12, 546–564. [Google Scholar]
- Zhou, Y.; Xu, L.; Shaikh, G.M. Evaluating and Prioritizing the Green Supply Chain Management Practices in Pakistan: Based on Delphi and Fuzzy AHP Approach. Symmetry 2019, 11, 1346. [Google Scholar] [CrossRef] [Green Version]
- Deng, W. Evaluation of Transformation Efficiency of Resource-based Coastal Cities Based on AHP and DEA Analysis. J. Coast. Res. 2019, 94, 878–882. [Google Scholar] [CrossRef]
- Vu, T.P.; Doa, N.H.; Vo, T.C. Application of Analytical Hierarchy Process (AHP) Technique to Evaluate the Combined Impact of Coal Mining on Land Use and Environment. A Case Study in the Ha Long City, Quang Ninh province, Vietnam. Int. J. Environ. Probl. 2017, 3, 54–58. [Google Scholar]
- Paraskevis, N.; Roumpos, C.; Stathopoulos, N.; Adam, A. Spatial analysis and evaluation of a coal deposit by coupling AHP & GIS techniques. Int. J. Min. Sci. Technol. 2019, 29, 943–953. [Google Scholar]
- Ríos, S.; Delgado, A. Stakeholders and Criteria on a Mining Project using AHP and Entropy-Weight Methods. Int. J. Recent Technol. Eng. 2019, 8, 1933–1942. [Google Scholar]
- Dong, L.; Shu, W.; Li, X.; Zhang, J. Quantitative evaluation and case studies of cleaner mining with multiple indexes considering uncertainty factors for phosphorus mines. J. Clean. Prod. 2018, 183, 319–334. [Google Scholar] [CrossRef]
- Chand, P.; Thakkar, J.J.; Ghosh, K.K. Analysis of supply chain complexity drivers for Indian mining equipment manufacturing companies combining SAP-LAP and AHP. Resour. Policy 2018, 59, 389–410. [Google Scholar] [CrossRef]
- Shao, J. GIS & AHP-Based suitability evaluation on ecology reclamation of mining subsided zones. In Proceedings of the IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 December 2017; pp. 1456–1460. [Google Scholar]
- Liu, X.; Liu, H.; Wan, Z.; Wang, L.; Chen, Q. Study on Evaluation Index System of Sustainable Development of Mine Water Resources Based on PSO-AHP Model and Fuzzy Comprehensive Evaluation. J. Intell. Fuzzy Syst. 2021, 1–12. [Google Scholar] [CrossRef]
- Pavolová, H.; Bakalár, T.; Tokarčík, A.; Kozáková, Ľ.; Pastyrčák, T. An Economic Analysis of Brownfield and Greenfield Industrial Parks Investment Projects: A Case Study of Eastern Slovakia. Int. J. Environ. Res. Public Health 2021, 18, 3472. [Google Scholar] [CrossRef]
- HBÚ. The Main Mining Office. Available online: http://www.hbu.sk/sk/Hlavny-bansky-urad.alej (accessed on 10 December 2019).
- ŠUSR. The Statistical Office of Slovak Republic. Available online: https://slovak.statistics.sk/ (accessed on 15 January 2020).
- MŽP, SR. The Ministry of Environment of the Slovak Republic. Available online: https://minzp.sk/en/about-us/ (accessed on 10 January 2020).
- Sas, K.; Suarez, A. Priorities for Occupational Safety and Health Research in Europe for the Years 2013–2020, 1st ed.; European Agency for Safety and Health at Work: Luxembourg, 2014. [Google Scholar]
- Čulková, K.; Rosova, A.; Cehlár, M.; Pavolová, H. Development of Chosen Social and Economic Indicators of Using Raw Materials in the Context of Sustainability in Slovakia. In Proceedings of the 4th EAI International Conference on Management of Manufacturing Systems: MMS 2019, Krynica Zdroj, Poland, 8–10 October 2019; Knapcikova, L., Balog, M., Perakovic, D., Perisa, M., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 286–296. [Google Scholar]
- Arisov, A.; Leyvy, A.; Kryukova, E.; Zavorokhina, N.; Pastushkova, E. Raw material safety as one of the factors of sustainable development of the food industry. E3S Web Conf. 2019, 105, 04009. [Google Scholar]
Indicator Value | Description of Compared Indicators |
---|---|
1 | Indicators i and j are equivalent |
3 | The indicator i is slightly preferred over the determinant j |
5 | The indicator i is strongly preferred over the determinant j |
7 | The indicator i is highly preferred over the determinant j |
9 | The indicator i is absolutely preferred over the determinant j |
1 I | I1 | I2 | I3 | I4 | I5 | I6 | I7 | I8 | I9 | I10 | I11 | I12 | I13 | I14 | Si | Ri | αi |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I1 | 1 | 3 | 5 | 3 | 3 | 3 | 3 | 3 | 3 | 5 | 5 | 3 | 3 | 7 | 17,222,625.0000 | 3.28749 | 0.19 |
I2 | 1/3 | 1 | 1 | 1/3 | 1 | 1/3 | 1/3 | 1 | 1 | 1/3 | 1 | 1 | 1/5 | 1/5 | 0.0002 | 0.53672 | 0.03 |
I3 | 1 | 1 | 1 | 1 | 3 | 1 | 3 | 3 | 3 | 1 | 5 | 1/5 | 3 | 5 | 1215.0000 | 1.66084 | 0.10 |
I4 | 1/3 | 3 | 1 | 1 | 1 | 1/3 | 1/3 | 1/3 | 1 | 1 | 1 | 1/5 | 1 | 1/3 | 0.0025 | 0.65126 | 0.04 |
I5 | 1/3 | 1 | 3 | 1 | 1 | 1/3 | 1 | 1 | 1/3 | 1/3 | 1 | 5 | 1/5 | 1/9 | 0.0041 | 0.67546 | 0.04 |
I6 | 1/3 | 3 | 1 | 3 | 3 | 1 | 3 | 3 | 1 | 1 | 1 | 1 | 1/3 | 1/3 | 9.0000 | 1.16993 | 0.07 |
I7 | 1/3 | 3 | 3 | 3 | 1 | 1/3 | 1 | 1 | 1 | 1 | 1/3 | 1/5 | 1/7 | 1/9 | 0.0032 | 0.66305 | 0.04 |
I8 | 1/3 | 1 | 3 | 3 | 1 | 1/3 | 1 | 1 | 1 | 1 | 1 | 1/5 | 1/7 | 1/7 | 0.0041 | 0.67506 | 0.04 |
I9 | 1/3 | 1 | 1 | 1 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 1/3 | 5 | 1/3 | 1.6667 | 1.03716 | 0.06 |
I10 | 1/5 | 3 | 1 | 1 | 3 | 3 | 1 | 1 | 1 | 1 | 3 | 5 | 3 | 1/3 | 81.0000 | 1.36874 | 0.08 |
I11 | 1/5 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1/3 | 1 | 3 | 5 | 1/3 | 0.0400 | 0.79460 | 0.05 |
I12 | 1/3 | 1 | 5 | 5 | 1/5 | 1/5 | 5 | 5 | 5 | 1/5 | 1/3 | 1 | 1/3 | 1/5 | 0.1852 | 0.88652 | 0.05 |
I13 | 1/3 | 5 | 1/3 | 1 | 5 | 5 | 7 | 7 | 1/5 | 1/3 | 5 | 3 | 1 | 1 | 680.5556 | 1.59348 | 0.09 |
I14 | 1/7 | 5 | 1/5 | 3 | 9 | 9 | 9 | 7 | 3 | 3 | 3 | 5 | 1 | 1 | 292,245.0000 | 2.45882 | 0.14 |
2 S | 17.4591 | 1.00 |
1 I | I1 | I2 | I3 | I4 | I5 | I6 | I7 | I8 | I9 | I10 | I11 | I12 | I13 | I14 | Si | Ri | αi |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I1 | 1 | 1 | 1/3 | 5 | 1/3 | 1/3 | 1 | 1/5 | 1/5 | 1 | 1/5 | 1/7 | 1/3 | 3 | 0.0002 | 0.5464 | 0.03 |
I2 | 1 | 1 | 1/5 | 1/3 | 1/3 | 1/5 | 1/3 | 1 | 1 | 1/3 | 1 | 1/7 | 1/3 | 5 | 0.0001 | 0.5240 | 0.03 |
I3 | 3 | 5 | 1 | 1/3 | 1/5 | 1/3 | 1/3 | 7 | 5 | 3 | 5 | 1/3 | 1/3 | 1 | 6.4815 | 1.1428 | 0.07 |
I4 | 1/5 | 3 | 3 | 1 | 1/3 | 1/3 | 1/3 | 1/5 | 1 | 1/5 | 1/7 | 1/3 | 1/3 | 1/7 | 0.0000 | 0.4239 | 0.03 |
I5 | 3 | 3 | 5 | 3 | 1 | 1 | 1/3 | 1/5 | 1 | 1/3 | 1/3 | 1 | 1/3 | 1/5 | 0.0667 | 0.8241 | 0.05 |
I6 | 3 | 5 | 3 | 3 | 1 | 1 | 3 | 1/3 | 1/3 | 1/3 | 1/5 | 1 | 1 | 1/7 | 0.4286 | 0.9413 | 0.06 |
I7 | 1 | 3 | 3 | 3 | 3 | 1/3 | 1 | 1/3 | 1 | 1/5 | 1/5 | 1 | 1 | 1/3 | 0.1200 | 0.8595 | 0.05 |
I8 | 5 | 1 | 1/7 | 5 | 5 | 3 | 3 | 1 | 5 | 3 | 1 | 1 | 1 | 1/3 | 803.5714 | 1.6125 | 0.10 |
I9 | 5 | 1 | 1/5 | 1 | 1 | 3 | 1 | 1/5 | 1 | 1/3 | 1/5 | 1 | 1 | 1/3 | 0.0133 | 0.7346 | 0.05 |
I10 | 1 | 3 | 1/3 | 5 | 3 | 3 | 5 | 1/3 | 3 | 1 | 1 | 3 | 1 | 1 | 675.0000 | 1.5926 | 0.10 |
I11 | 1/5 | 1 | 1 | 7 | 3 | 5 | 5 | 1 | 5 | 1 | 1 | 3 | 3 | 1 | 4725.0000 | 1.8300 | 0.12 |
I12 | 7 | 7 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 1/3 | 1/3 | 1 | 1 | 1/5 | 9.8000 | 1.1771 | 0.07 |
I13 | 3 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 1 | 5 | 32,805.0000 | 2.1017 | 0.13 |
I14 | 1 | 1 | 1 | 1/3 | 5 | 7 | 3 | 3 | 3 | 1 | 1 | 5 | 1/5 | 1 | 315.0000 | 1.5082 | 0.10 |
2 S | 15.8186 | 1.00 |
Indicator/Interaction | Determinants | Partial Score | Score | Scoring Rate |
---|---|---|---|---|
impact on the inhabitants’ health | − | 9.83 | 52.70 | 0.90 |
impact on the natural environment (syner. ef.) | − | 1.60 | ||
impact on the spheres of the Earth | − | 4.97 | ||
impact on the climatic conditions | − | 1.95 | ||
impact on the air | − | 2.02 | ||
impact on the hydrogeological conditions | − | 3.50 | ||
impact on the fauna | − | 1.98 | ||
impact on the flora | − | 2.02 | ||
impact on the protected areas | − | 3.10 | ||
impact on the ecological stability | − | 4.09 | ||
impact on the country | − | 2.38 | ||
impact on the municipality complex | − | 2.65 | ||
production of mining waste | − | 5.26 | ||
heaps, ponds, or old mining works | − | 7.35 | ||
increase of GDP per inhabitant | + | 1.63 | 47.30 | |
support of social development | + | 1.57 | ||
employment increasing | + | 3.42 | ||
source of money for state budget | + | 1.27 | ||
impact on the trade with RM | + | 2.46 | ||
increased autonomy for SR | + | 2.81 | ||
FDI possibilities | + | 2.57 | ||
support of regional development | + | 4.82 | ||
positive financial effect for stakeholders | + | 2.20 | ||
increase of purchase power | + | 4.76 | ||
impact on the living standards | + | 5.47 | ||
amount of FDI inflowing | + | 3.52 | ||
increasing of work productivity index | + | 6.28 | ||
increasing of average wage | + | 4.51 |
Category of RM Mining Utility | Level of Profitability | |
---|---|---|
I. category | Very high | over 1.80 |
II. category | High | 1.79–1.30 |
III. category | Average | 1.99–0.80 |
IV. category | Low | 0.79–0.30 |
V. category | Very low | 0.29 and less |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavolová, H.; Bakalár, T.; Šimková, Z.; Tokarčík, A. Model of Raw Material Exploitation for the Support of Sustainable Development. Appl. Sci. 2021, 11, 7919. https://doi.org/10.3390/app11177919
Pavolová H, Bakalár T, Šimková Z, Tokarčík A. Model of Raw Material Exploitation for the Support of Sustainable Development. Applied Sciences. 2021; 11(17):7919. https://doi.org/10.3390/app11177919
Chicago/Turabian StylePavolová, Henrieta, Tomáš Bakalár, Zuzana Šimková, and Alexander Tokarčík. 2021. "Model of Raw Material Exploitation for the Support of Sustainable Development" Applied Sciences 11, no. 17: 7919. https://doi.org/10.3390/app11177919
APA StylePavolová, H., Bakalár, T., Šimková, Z., & Tokarčík, A. (2021). Model of Raw Material Exploitation for the Support of Sustainable Development. Applied Sciences, 11(17), 7919. https://doi.org/10.3390/app11177919