Bioactive Composition and Nutritional Profile of Microgreens Cultivated in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Design
2.2. Growth and Cultivation
2.3. Proximate Analysis
2.4. Phytochemical Analysis
2.4.1. Chlorophyll and Carotenoids
2.4.2. Anthocyanin
2.4.3. Total Phenolic Content
2.4.4. Total Antioxidant Activity
2.4.5. Ascorbic Acid
2.5. Data Analysis
3. Results and Discussion
3.1. Proximate Analysis
3.2. Bioactive Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kyriacou, M.C.; Rouphael, Y.; Gioia, F.D.; Kyratzis, A.; Serio, F.; Renna, M.; Pascale, S.D.; Santamaria, P. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Di Gioia, F.; Renna, M.; Santamaria, P. Sprouts, microgreens and “baby leaf” vegetables. In Minimally Processed Refrigerated Fruits and Vegetables; Yildiz, F., Wiley, R.C., Eds.; Springer: New York, NY, USA, 2017; pp. 403–428. [Google Scholar]
- Kopsell, D.A.; Sams, C.E.; Barickman, T.C.; Morrow, R.C. Sprouting broccoliaccumulate higher concentrations of nutritionally important metab-olites under narrow-band light-emitting diode lighting. J. Am. Soc. Hort. Sci. 2014, 139, 469–477. [Google Scholar] [CrossRef]
- Moreira-Rodríguez, M.; Nair, V.; Benavides, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. UVA, UVB light, and methyl jasmonate, aloneor combined, redirect the biosynthesis of glucosinolates, phenolics, carotenoids, and chlorophylls in broccoli sprouts. Int. J. Mol. Sci. 2017, 18, 2330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghoora, M.D.; Babu, D.R.; Srividya, N. Nutrient composition, oxalate content and nutritional ranking of ten culinary microgreens. J. Food Compos. Anal. 2020, 91, 103495. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P.; Tkacz, K.; Turkiewicz, I.P. Sprouts vs. microgreens as novel functional foods: Variation of nutritional and phytochemical profiles and their in vitro bioactive properties. Molecules 2020, 25, 4648. [Google Scholar] [CrossRef]
- Márton, M.; Mándoki, Z.; Csapó-Kiss, Z.; Csapó, J. The role of sprouts in human nutrition. A review. Acta Univ. Sapientiae Aliment. 2010, 3, 81–117. [Google Scholar]
- Xiao, Z.; Codling, E.E.; Luo, Y.; Nou, X.; Lester, G.E.; Wang, Q. Microgreens of Brassicaceae: Mineral composition and content of 30 varieties. J. Food Compos. Anal. 2016, 49, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Rausch, S.R.; Luo, Y.; Sun, J.; Yu, L.; Wang, Q.; Chen, P.; Yu, L.; Stommel, J.R. Microgreens of Brassicaceae: Genetic diversity of phytochemical concentrations and antioxidant capacity. LWT-Food Sci. Technol. 2019, 101, 731–737. [Google Scholar] [CrossRef]
- Sangronis, E.; Machado, C.J. Influence of germination on the nutritional quality of Phaseolus vulgaris and Cajanus cajan. LWT-Food Sci. Technol. 2007, 40, 116–120. [Google Scholar] [CrossRef]
- Gómez-Maqueo, X.; Soriano, D.; Velázquez-Rosas, N.; Alvarado-López, S.; Jiménez-Durán, K.; Garciadiego, M.M.; Buen, A.G. The seed water content as a timeindependent physiological trait during germination in wild tree species such as Ceiba aesculifolia. Sci. Rep. 2020, 10, 10429. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis. 21st Edition, Association of Official Analytical Chemists; AOAC Publishing: Washington, DC, USA, 2019. [Google Scholar]
- Moran, R. Formulae for determination of chlorophyllous pigments extracted with N,N-dimethylformamide. Plant Physiol. 1982, 69, 1376–1381. [Google Scholar] [CrossRef] [Green Version]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Giusti, M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 00, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.L. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthone on the auto oxidation of soybean in cylcodextrin emulsion. J. Agric. Food Chem. 1992, 40, 945–948. [Google Scholar] [CrossRef]
- Roe, J.H.; Mills, M.B.; Oesterling, M.J.; Damron, C.M. The determination of diketo-l-gulonic acid, dehydro-l-ascorbic acid and l-ascorbic acid in the same tissue extract by the 2,4-dinitrophenylhydrazine method. J. Biol. Chem. 1948, 174, 201–208. [Google Scholar] [CrossRef]
- Hedley, C.L. Carbohydrates in Grain Legume Seeds: Improving Nutritional Quality and Agronomic Characteristics; CABI Publishing: New York, NY, USA, 2001. [Google Scholar]
- Jarpa-Parra, M. Lentil protein: A review of functional properties and foodapplication. An overview of lentil protein functionality. Int. J. Food Sci. Technol. 2018, 53, 892–903. [Google Scholar] [CrossRef] [Green Version]
- Boye, J.; Zare, F.; Pletch, A. Pulse proteins: Praocessing, characterization, functional properties and applications in foodand feed. Food Res. Int. 2010, 43, 414–431. [Google Scholar] [CrossRef]
- Paradiso, V.M.; Castellino, M.; Renna, M.; Gattullo, C.E.; Calasso, M.; Terzano, R.; Allegretta, I.; Leoni, B.; Caponio, F.; Santamaria, P. Nutritional characterization and shelf-life of packaged microgreens. Food Funct. 2018, 9, 5629–5640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Žnidarčič, D.; Ban, D.; Šircelj, H. Carotenoid and chlorophyll composition of commonly consumed leafy vegetables in Mediterranean countries. Food Chem. 2011, 129, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Fuente, B.; López-García, G.; Máñez, V.; Alegría, A.; Barberá, R.; Cilla, A. Evaluation of the bioaccessibility of antioxidant bioactive compounds and minerals of four genotypes of Brassicaceae microgreens. Foods 2019, 8, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghoora, M.D.; Haldipur, A.C.; Srividya, N. Comparative evaluation of phytochemical content, antioxidant capacities and overall antioxidant potential of select culinary microgreens. J. Agric. Food Res. 2020, 2, 100046. [Google Scholar] [CrossRef]
- Gonzalez, A.; Zhao, M.; Leavitt, J.; Lloyd, A.M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J. 2008, 53, 814–827. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Zou, L.; Su, Y.; Fan, Y.; Zhao, G. Effects of light on growth, levels of anthocyanin, concentration of metabolites in Fagopyrum tataricum sprout cultures. Int. J. Food Sci. Tech. 2015, 50, 1382–1389. [Google Scholar] [CrossRef]
- Prior, R.L.; Cao, G. Antioxidant phytochemicals in fruits and vegetables: Diet and health implications. Hortscience 2000, 35, 588–592. [Google Scholar] [CrossRef] [Green Version]
- Carr, A.C.; Frei, B. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am. J. Clin. Nutr. 1999, 69, 1086–1107. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.T. Phenolic Compounds in Food: An Overview; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1992. [Google Scholar]
- Hollman, P.C.H. Evidence for health benefits of plant phenols: Local or systemic effects? J. Sci. Food Agric. 2001, 81, 842–852. [Google Scholar] [CrossRef]
- Lester, G.E.; Makus, D.J.; Hodges, D.M.; Jifon, J.L. Summer (Subarctic) versus winter (Subtropic) production affects spinach (Spinacia oleracea L.) leaf bionutrients: Vitamins (C, E, Folate, K1, provitamin A), lutein, phenolics, and antioxidants. J. Agric. Food Chem. 2013, 61, 7019–7027. [Google Scholar] [CrossRef]
- Stommel, J.R.; Whitaker, B.D.; Haynes, K.G.; Prohens, J. Genotype × environment interactions in eggplant for fruit phenolic acid content. Euphytica 2015, 205, 823–836. [Google Scholar] [CrossRef]
Common Name | Scientific Name | Family |
---|---|---|
Broccoli | Brassica oleracea L.var. italica | Brassicaceae |
Chinese kale | Brassica oleracea L.var. alboglabra | Brassicaceae |
Purple radish | Raphanus sativus L. var. longipinnatus | Brassicaceae |
Radish | Raphanus sativus L. | Brassicaceae |
Rat-tailed radish | Raphanus caudatus L. var. caudatus Alef | Brassicaceae |
Red cabbage | Brassica oleracea L.var. capitata f. rubra | Brassicaceae |
Fenugreek | Trigonella foenum-graecum L. | Fabaceae |
Green pea | Pisum sativum L. | Fabaceae |
Lentil | Lens culinaris Medicus | Fabaceae |
Mung bean | Vigna radiata (L.) R. Wilczek | Fabaceae |
Black sesame | Sesamum indicum L. | Pedaliaceae |
Buckwheat | Fagopyrum esculentum Moench | Polygonaceae |
Morning glory | Ipomea reptans L. | Convolvulaceae |
Red roselle | Hibiscus sabdariffa L. | Malvaceae |
Microgreens | Soaking Time (h) | Germination Time | Growing Material | Sprouting in the Dark Time (Day) | Light Exposure Time (Day) | Harvesting Time (Day) |
---|---|---|---|---|---|---|
Brassicaceae | ||||||
Broccoli | 6 * | 1 night | Kinocloth® | 5 | 4 | 9 |
Chinese kale | 6 * | 1 night | Sponge | 3 | 4 | 7 |
Purple radish | 6 * | 1 night | Sponge | 4 | 3 | 7 |
Radish | 6 * | 1 night | Sponge | 4 | 3 | 7 |
Rat-tailed radish | 6 ** | 1 night | Sponge | 4 | 6 | 10 |
Red cabbage | 6 ** | 1 night | Kinocloth® | 5 | 5 | 10 |
Fabaceae | ||||||
Fenugreek | 6 ** | 1 night | Sponge | 3 | 4 | 7 |
Green pea | 6 ** | 1 night | Peat Moss | 4 | 3 | 7 |
Lentil | 6 ** | 1 night | Sponge | 4 | 3 | 7 |
Mung bean | 12 * | 1 night | Sponge | 3 | 1 | 4 |
Others | ||||||
Black sesame | 6 * | 1 night | Kinocloth® | 3 | 5 | 8 |
Buck wheat | 6 * | 1 night | Sponge | 4 | 6 | 10 |
Morning glory | 6 * | 1 night | Sponge | 4 | 6 | 10 |
Red roselle | 6 * | 1 night | Sponge | 4 | 6 | 10 |
Microgreens | Ash | Total Carbohydrate | Total Protein | Moisture | Total Fat | Total Calories |
---|---|---|---|---|---|---|
(g 100 g−1) | (kcal 100 g−1) | |||||
Brassicaceae | ||||||
Broccoli | 0.51 ± 0.02 | 2.70 ± 0.20 | 2.23 ± 0.11 | 94.07 ± 3.11 | 0.49 ± 0.01 | 24.13 ± 0.20 |
Chinese kale | 0.65 ± 0.00 | 3.13 ± 0.11 | 2.23 ± 0.00 | 93.63 ± 2.12 | 0.36 ± 0.02 | 24.68 ± 0.22 |
Purple radish | 0.52 ± 0.05 | 3.70 ± 0.10 | 3.41 ± 0.05 | 91.88 ± 1.25 | 0.49 ± 0.01 | 32.85 ± 0.15 |
Radish | 0.44 ± 0.02 | 3.29 ± 0.09 | 2.58 ± 0.01 | 93.19 ± 1.23 | 0.50 ± 0.01 | 27.98 ± 0.20 |
Rat-tailed radish | 0.43 ± 0.00 | 2.91 ± 0.03 | 2.50 ± 0.03 | 93.50 ± 2.13 | 0.66 ± 0.03 | 27.58 ± 0.13 |
Red cabbage | 0.75 ± 0.05 | 2.32 ± 0.01 | 1.88 ± 0.02 | 94.67 ± 3.11 | 0.38 ± 0.02 | 20.22 ± 0.22 |
Fabaceae | ||||||
Fenugreek | 0.50 ± 0.00 | 5.12 ± 0.02 | 4.03 ± 0.06 | 90.17 ± 1.22 | 0.18 ± 0.00 | 38.22 ± 0.27 |
Green pea | 0.36 ± 0.02 | 3.39 ± 0.04 | 3.73 ± 0.02 | 92.37 ± 2.38 | 0.15 ± 0.00 | 29.83 ± 0.15 |
Lentil | 0.61 ± 0.00 | 5.92 ± 0.01 | 6.47 ± 0.11 | 86.57 ± 1.12 | 0.43 ± 0.02 | 53.43 ± 0.19 |
Mung bean | 0.64 ± 0.04 | 7.16 ± 0.02 | 4.55 ± 0.05 | 87.29 ± 2.28 | 0.36 ± 0.01 | 50.08 ± 0.11 |
Others | ||||||
Black sesame | 0.34 ± 0.00 | 3.58 ± 0.03 | 1.92 ± 0.02 | 93.75 ± 2.27 | 0.41 ± 0.02 | 25.69 ± 0.10 |
Buckwheat | 0.34 ± 0.00 | 4.90 ± 0.01 | 1.75 ± 0.03 | 92.74 ± 1.11 | 0.27 ± 0.01 | 29.03 ± 0.14 |
Morning glory | 0.54 ± 0.01 | 3.08 ± 0.03 | 1.76 ± 0.00 | 94.26 ± 1.21 | 0.36 ± 0.01 | 22.60 ± 0.12 |
Red roselle | 0.64 ± 0.00 | 2.51 ± 0.05 | 4.10 ± 0.07 | 92.51 ± 1.19 | 0.24 ± 0.01 | 28.60 ± 0.07 |
Common Name | Total Chlorophyll (mg 100 g−1) | Carotenoid (mg 100 g−1) | Anthocyanin (mg CGE 100 g−1) | Total Phenolic (mg GAE 100 g−1) | Ascorbic Acid (mg 100 g−1) | DPPH• Scavenging Activity (mM TEAC g−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Broccoli | 52.26 | bc | 13.47 | bc | NA | 87.56 | cde | 79.11 | a | 35.56 | cd | |
Chinese kale | 58.44 | b | 15.00 | b | NA | 130.59 | bc | 81.33 | a | 41.90 | c | |
Purple radish | 49.80 | bcd | 13.12 | bcd | 0.148 | b | 132.78 | bc | 82.58 | a | 38.50 | g |
Radish | 59.21 | b | 15.61 | b | NA | 145.04 | b | 56.49 | b | 38.39 | cd | |
Rat-tailed radish | 36.61 | de | 9.34 | efg | NA | 143.11 | b | 48.24 | b | 37.63 | cd | |
Red cabbage | 39.79 | cde | 12.08 | bcde | 0.246 | a | 112.29 | bcd | 89.49 | a | 55.45 | b |
Fenugreek | 57.10 | b | 14.28 | b | NA | 59.72 | cde | 36.18 | c | 61.48 | b | |
Green pea | 12.35 | f | 4.40 | h | NA | 38.14 | ef | 42.45 | c | 34.82 | cd | |
Lentil | 112.62 | a | 28.37 | a | NA | 89.05 | bc | 128.70 | a | 36.34 | cd | |
Mung bean | 26.13 | ef | 5.86 | gh | NA | 59.95 | def | 25.37 | c | 25.50 | e | |
Black sesame | 37.85 | de | 9.56 | def | NA | 49.03 | ef | 6.84 | d | 33.44 | de | |
Buckwheat | 34.65 | e | 10.42 | cdef | NA | 268.99 | a | 62.90 | b | 90.83 | a | |
Morning glory | 28.29 | e | 6.92 | fgh | NA | 9.22 | f | 16.78 | cd | 10.11 | f | |
Roselle | 36.37 | de | 8.87 | efg | NA | 57.06 | ef | 22.23 | cd | 42.08 | c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowitcharoen, L.; Phornvillay, S.; Lekkham, P.; Pongprasert, N.; Srilaong, V. Bioactive Composition and Nutritional Profile of Microgreens Cultivated in Thailand. Appl. Sci. 2021, 11, 7981. https://doi.org/10.3390/app11177981
Kowitcharoen L, Phornvillay S, Lekkham P, Pongprasert N, Srilaong V. Bioactive Composition and Nutritional Profile of Microgreens Cultivated in Thailand. Applied Sciences. 2021; 11(17):7981. https://doi.org/10.3390/app11177981
Chicago/Turabian StyleKowitcharoen, Laddawan, Surisa Phornvillay, Pornpan Lekkham, Nutthachai Pongprasert, and Varit Srilaong. 2021. "Bioactive Composition and Nutritional Profile of Microgreens Cultivated in Thailand" Applied Sciences 11, no. 17: 7981. https://doi.org/10.3390/app11177981
APA StyleKowitcharoen, L., Phornvillay, S., Lekkham, P., Pongprasert, N., & Srilaong, V. (2021). Bioactive Composition and Nutritional Profile of Microgreens Cultivated in Thailand. Applied Sciences, 11(17), 7981. https://doi.org/10.3390/app11177981