Spatio-Temporal Variation of Reference Evapotranspiration and Its Climatic Drivers over the Tibetan Plateau during 1970–2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Calculation of ET0
2.3.2. Cramer Test for Abrupt Change Point
2.3.3. Mann–Kendall Test for Trend Analysis
2.3.4. Spatial Interpolation Method
2.3.5. Sensitivity Analysis and Contribution Rate Calculation
3. Results
3.1. Spatio-Temporal Variation Characteristics of ET0
3.2. Spatio-Temporal Variation Characteristics of Climatic Factors
3.3. Spatial Distribution of the Sensitivity Coefficients
3.4. Dominant Climate Factors of ET0 Change
4. Discussion
5. Conclusions
- There is an abrupt point in the TP’s annual ET0 series around 1997. The ET0 decreased remarkably at a rate of −25.9 mm/decade before 1997, while increasing significantly at a speed of 31.1 mm/decade after 1997;
- Second item: before 1997, Tmean and RH increased significantly while U2 decreased significantly and RS decreased insignificantly. After 1997, Tmean and U2 increased insignificantly, RH and RS decreased significantly;
- The sensitivity analysis of each climate factor to ET0 indicated the ET0 on the TP is most sensitive to RS, followed by RH, U2 and Tmean;
- Third item: from 1970 to 1996, U2 was the most important meteorological factor contributing to the decline of ET0, followed by RH, Tmean, and RS. During 1997–2018, the decreasing of RH was the dominant factor causing an increase in ET0. The increase of U2 and Tmean also intensified the increase of ET0 to a certain extent.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, X.; Zang, C.; Burenina, T. Study on the variation in evapotranspiration in different period of the Genhe River Basin in China. Phys. Chem. Earth 2020, 120, 102902. [Google Scholar] [CrossRef]
- Maeda, E.E.; Wiberg, D.A.; Pellikka, P.K.E. Estimating reference evapotranspiration using remote sensing and empirical models in a region with limited ground data availability in Kenya. Appl. Geogr. 2011, 31, 251–258. [Google Scholar] [CrossRef]
- Kun, Y.; Baohong, D.; Jun, Q.; Wenjun, T.; Ning, L.; Changgui, L. Can aerosol loading explain the solar dimming over the Tibetan Plateau? Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Boisier, J.P.; de Noblet-Ducoudré, N.; Ciais, P. Historical land-use-induced evapotranspiration changes estimated from present-day observations and reconstructed land-cover maps. Hydrol. Earth Syst. Sci. 2014, 18, 3571–3590. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Wang, X.; Wang, Y.; Xu, Y.; Han, X. Temporal variations in reference evapotranspiration in Hubei Province, China, from 1960 to 2014. Theor. Appl. Climatol. 2019, 135, 433–448. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, D. Temporal and Spatial Change Analysis of the Sensitivity of Potential Evapotranspiration to Meteorological Influencing Factorsin China. Acta Geogr. Sin. 2011, 66, 579–588. [Google Scholar]
- Rachid, H.; Tarik, B.; Hayat, L.; Adil, S. Comparative assessment of different reference evapotranspiration models towards a fit calibration for arid and semi-arid areas. J. Arid Environ. 2021, 184, 104318. [Google Scholar]
- Zhao, J.; Xia, H.; Yue, Q.; Wang, Z. Spatiotemporal variation in reference evapotranspiration and its contributing climatic factors in China under future scenarios. Int. J. Climatol. 2020, 40, 3813–3831. [Google Scholar] [CrossRef]
- Fan, J.; Wu, L.; Zhang, F.; Xiang, Y.; Zheng, J. Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956–2015. J. Hydrol. 2016, 542, 923–937. [Google Scholar] [CrossRef]
- Li, Y.; Wei, X.; Su, H. Quantitative analysis of causes for temporal and spatial variation characteristics and evolution of potential evapotranspiration in Gansu Province during recent 30 years. J. Water Resour. Water Eng. 2015, 26, 219–225. [Google Scholar]
- Wang, Z.; Ye, A.; Wang, L.; Liu, K.; Cheng, L. Spatial and temporal characteristics of reference evapotranspiration and its climatic driving factors over China from 1979–2015. Agric. Water Manag. 2019, 213, 1096–1108. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, H.; Zhang, M.; Liu, C. Identification of dominant climate factor for pan evaporation trend in the Tibetan Plateau. J. Geogr. Sci. 2011, 21, 594–608. [Google Scholar] [CrossRef]
- Deepak, J.; Yagob, D.; Ercan, K.; Vijay, P.S.; Ahmad, F.F. Trends in reference evapotranspiration in the humid region of northeast India. Hydrol. Process. 2012, 26, 421–435. [Google Scholar]
- Michael, L.R.; Graham, D.F. Changes in New Zealand pan evaporation since the 1970s. Int. J. Climatol. 2005, 25, 2031–2039. [Google Scholar]
- Moonen, A.C.; Ercoli, L.; Mariotti, M.; Masoni, A. Climate change in Italy indicated by agrometeorological indices over 122 years. Agric. For. Meteorol. 2002, 111, 13–27. [Google Scholar] [CrossRef]
- Brutsaert, W.; Parlange, M.B. Hydrologic cycle explains the evaporation paradox. Nat. Int. Wkly. J. Sci. 1998, 396, 30. [Google Scholar] [CrossRef]
- Han, J.; Wang, J.; Zhao, Y.; Wang, Q.; Zhang, B.; Li, H.; Zhai, J. Spatio-temporal variation of potential evapotranspiration and climatic drivers in the Jing-Jin-Ji region, North China. Agric. For. Meteorol. 2018, 256, 75–83. [Google Scholar] [CrossRef]
- Xu, S.; Yu, Z.; Yang, C.; Ji, X.; Zhang, K. Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin. Agric. For. Meteorol. 2018, 263, 118–129. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, W.; Wang, S.; Zhang, L. Increasing Trend of Pan Evaporation over the Semiarid Loess Plateau under a Warming Climate. J. Appl. Meteorol. Clim. 2016, 55, 2007–2020. [Google Scholar] [CrossRef]
- Brij, K.P.; Deepak, K. Identification of trend in long term precipitation and reference evapotranspiration over Narmada river basin (India). Glob. Planet. Chang. 2018, 161, 172–182. [Google Scholar]
- Cong, Z.T.; Yang, D.W.; Ni, G.H. Does evaporation paradox exist in China? Hydrol. Earth Syst. Sci. Discuss. 2008, 5, 357–366. [Google Scholar]
- Liu, X.; Zhang, D.; Luo, Y.; Liu, C. Spatial and temporal changes in aridity index in northwest China: 1960 to 2010. Theor. Appl. Climatol. 2013, 112, 307–316. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X.; Zhao, G.; Huang, Y. Surface energy fluxes and controls of evapotranspiration in three alpine ecosystems of Qinghai Lake watershed, NE Qinghai-Tibet Plateau. Ecohydrology 2016, 9, 267–279. [Google Scholar] [CrossRef]
- Duan, A.; Xiao, Z. Does the climate warming hiatus exist over the Tibetan Plateau? Sci. Rep. 2015, 5, 13711. [Google Scholar] [CrossRef]
- You, Q.; Kang, S.; Fluegel, W.; Pepin, N.; Yan, Y.; Huang, J. Decreasing wind speed and weakening latitudinal surface pressure gradients in the Tibetan Plateau. Clim. Res. 2010, 42, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ren, Y.; Yin, Z.; Lin, Z.; Zheng, D. Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971–2004. J. Geophys. Res. 2009, 114, D1505. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, X. Reference Evapotranspiration and Its Attribution on the Tibetan Plateau from 1971 to 2014. Arid Zone Res. 2019, 36, 4–14. [Google Scholar]
- Jiang, Y.; Wang, P.; Xu, X.; Zhang, J. Dynamics of carbon fluxes with responses to vegetation, meteorological and terrain factors in the south-eastern Tibetan Plateau. Environ. Earth Sci. 2014, 72, 4551–4565. [Google Scholar] [CrossRef]
- Cui, M.; Wang, J.; Wang, S.; Yan, H.; Li, Y. Temporal and Spatial Distribution of Evapotranspiration and Its Influencing Factors on Qinghai-Tibet Plateau from 1982 to 2014. J. Resour. Ecol. 2019, 10, 213–224. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Food and Agricultural Organization: Rome, Italy, 1998; p. 56. [Google Scholar]
- Zheng, H.; Liu, X.; Liu, C.; Dai, X.; Zhu, R. Assessing contributions to panevaporation trends in Haihe River Basin, China. J. Geophys. Res. Atmos. 2009, 114, D24. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Zhao, Q.; Zhao, X.; Wu, P.; Pan, W.; Gao, X.; Sun, M. Temporal and spatial evolution of the standardized precipitation evapotranspiration index (SPEI) in the Loess Plateau under climate change from 2001 to 2050. Sci. Total Environ. 2017, 595, 191–200. [Google Scholar] [CrossRef]
- Robert, M.H.; James, R.S. A Nonparametric Trend Test for Seasonal Data With Serial Dependence. Water Resour. Res. 1984, 20, 727–732. [Google Scholar]
- Huang, J.; Liu, F.; Xue, Y.; Sun, S. The spatial and temporal analysis of precipitation concentration and dry spell in Qinghai, northwest China. Stoch. Environ. Res. Risk A 2015, 29, 1403–1411. [Google Scholar] [CrossRef]
- Gillard, J. Circular and Linear Regression: Fitting Circles and Lines by Least Squares. J. R. Stat. Soc. Ser. A 2011, 174, 843. [Google Scholar] [CrossRef]
- Nalder, I.A.; Wein, R.W. Spatial interpolation of climatic Normals: Test of a new method in the Canadian boreal forest. Agric. For. Meteorol. 1998, 92, 211–225. [Google Scholar] [CrossRef]
- Lin, Z.H.; Mo, X.G.; Li, H.X.; Li, H.B. Comparison of three spatial interpolation methods for climate variables in China. Acta Geogr. Sin. 2002, 57, 47–56. [Google Scholar]
- Beven, K. A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. J. Hydrol. 1979, 44, 169–190. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, H.; Liu, C.; Cao, Y. Sensitivity of the Potential Evapotranspiration to Key Climatic Variables in the Haihe River Basin. Resour. Sci. 2009, 31, 1470–1476. [Google Scholar]
- Mccuen, R.H. A sensitivity and error analysis Cf procedures used for estimating evaporation. J. Am. Water Resour. Assoc. 1974, 10, 486–497. [Google Scholar] [CrossRef]
- Lenhart, T.; Eckhardt, K.; Fohrer, N.; Frede, H.G. Comparison of two different approaches of sensitivity analysis. Phys. Chem. Earth 2002, 27, 645–654. [Google Scholar] [CrossRef]
- Yin, Y.; Wu, S.; Dai, E. Determining factors in potential evapotranspiration changes over China in the period 1971–2008. Chin. Sci. Bull. 2010, 55, 3329–3337. [Google Scholar] [CrossRef]
- Li, Y.; Liang, K.; Bai, P.; Feng, A.; Liu, L.; Dong, G. The spatiotemporal variation of reference evapotranspiration and the contribution of its climatic factors in the Loess Plateau, China. Environ. Earth Sci. 2016, 75, 364. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Y.; Zhang, X.; Chen, Z. Wind speed changes and its influencing factors in Southwestern China. Acta Ecol. Sin. 2014, 34, 471–481. [Google Scholar]
- Chen, S.; Liu, Y.; Axel, T. Climatic change on the Tibetan Plateau: Potential Evapotranspiration Trends from 1961–2000. Clim. Chang. 2006, 76, 291–319. [Google Scholar]
- Xie, X.; You, Q.; Lin, H. Surface relative humidity decreases and its cause over the Qinghai—Tibetan Plateau in recent ten years. Plateau Meteorol. 2018, 37, 642–650. [Google Scholar]
- Yin, Y.; Wu, S.; Chen, G.; Dai, E. Attribution analyses of potential evapotranspiration changes in China since the 1960s. Theor. Appl. Climatol. 2010, 101, 19–28. [Google Scholar] [CrossRef]
- Xie, H. The Evapotranspiration and Its Response to Climate Change in Tibet Plateau; Lanzhou University: Lanzhou, China, 2012. [Google Scholar]
Period | RS | RH | Tmean | U2 | ET0 |
---|---|---|---|---|---|
1970–1996 | 0.08 | 3.13 * | 2.54 * | −5.50 * | −4.84 * |
1997–2018 | −3.63 * | −3.63 * | 2.48 * | 4.32 * | 3.80 * |
1970–2018 | −3.59 * | −1.08 | 6.54 * | −5.42 * | −1.20 |
Period | CRRS | CRRH | CRTmean | CRU2 | C_(ET0) | LR_(ET0) | ε |
---|---|---|---|---|---|---|---|
1970–1996 | 0.10 | −2.43 | 0.80 | −4.41 | −5.94 | −6.70 | 12.79 |
1997–2018 | −0.96 | 3.33 | 1.58 | 2.34 | 6.29 | 6.60 | 4.70 |
1970–2018 | −0.67 | 1.04 | 3.05 | −4.29 | −0.87 | −0.94 | 7.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Gao, R.; Zhang, T.; Bai, P.; Zhang, R. Spatio-Temporal Variation of Reference Evapotranspiration and Its Climatic Drivers over the Tibetan Plateau during 1970–2018. Appl. Sci. 2021, 11, 8013. https://doi.org/10.3390/app11178013
Hu S, Gao R, Zhang T, Bai P, Zhang R. Spatio-Temporal Variation of Reference Evapotranspiration and Its Climatic Drivers over the Tibetan Plateau during 1970–2018. Applied Sciences. 2021; 11(17):8013. https://doi.org/10.3390/app11178013
Chicago/Turabian StyleHu, Shanshan, Ruyi Gao, Tao Zhang, Peng Bai, and Rui Zhang. 2021. "Spatio-Temporal Variation of Reference Evapotranspiration and Its Climatic Drivers over the Tibetan Plateau during 1970–2018" Applied Sciences 11, no. 17: 8013. https://doi.org/10.3390/app11178013
APA StyleHu, S., Gao, R., Zhang, T., Bai, P., & Zhang, R. (2021). Spatio-Temporal Variation of Reference Evapotranspiration and Its Climatic Drivers over the Tibetan Plateau during 1970–2018. Applied Sciences, 11(17), 8013. https://doi.org/10.3390/app11178013