Soil-Cement Mixtures Reinforced with Fibers: A Data-Driven Approach for Mechanical Properties Prediction
Abstract
:1. Introduction
2. Methodology
2.1. Modeling
2.2. Models Evaluation
2.3. Database
- Soil sand content (%)—%Sand
- Soil silt content (%)—%Silt
- Soil clay content (%)—%Clay
- Soil organic matter content (%)—%OM
- Liquid limit—WLL
- Plastic limit—WPL
- Water content (%)—ω0
- Cement content (%)—aw
- Cement dosage (kg/m3)—DKg/m3
- Ratio between water and cement contents—ω0/aw
- Age of the mixture (days)—t
- Length of the fiber (mm) —Lfiber
- Fiber content (%)—Tfiber
- Fiber dosage (kg/m3)—FKg/m3
- Tensile strength of the fiber (MPa)—fct_fiber
- Deformability modulus of the fiber (GPa)—Efiber
3. Results and Discussion
3.1. Uniaxial Compressive Strength
3.2. Indirect Tensile Strength
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holm, G. Keynote Lecture: Towards a sustainable society—Recent advances in deep mixing. In Proceedings of the International Conference on Deep Mixing—Best Practice and Recent Advances, Stockholm, Sweden, 23–25 May 2005; pp. k13–k24. [Google Scholar]
- Terashi, M.; Kitazume, M. Keynote Lecture: Current practice and future perspective of QA/QC for deep-mixed ground. In Proceedings of the International Symposium of Deep Mixing & Admixture Stabilization, Okinawa, Japan, 19–21 May 2009. [Google Scholar]
- Al-Tabbaa, A.; Barker, P.; Evans, C.W. Keynote Lecture: Design of deep mixing in infrastructure applications. In Proceedings of the International Symposium of Deep Mixing & Admixture Stabilization, Okinawa, Japan, 19–21 May 2009. [Google Scholar]
- Oliveira, P.J.V.; Correia, A.A.; Cajada, J.C. Effect of the type of soil on the cyclic behaviour of chemically stabilised soils unreinforced and reinforced with polypropylene fibres. Soil Dyn. Earthq. Eng. 2018, 115, 336–343. [Google Scholar] [CrossRef]
- Sukontasukkul, P.; Jamsawang, P. Use of steel and polypropylene fibres to improve flexural performance of deep soil-cement column. Constr. Build. Mater. 2012, 29, 201–205. [Google Scholar] [CrossRef]
- Oliveira, P.J.V.; Correia, A.A.S.; Teles, J.M.N.P.C.; Custódio, D.G. Effect of fibre type on the compressive and tensile strength of a soft soil chemically stabilised. Geosynth. Int. 2016, 23, 171–182. [Google Scholar] [CrossRef]
- Koksal, F.; Yıldırım, M.S.; Benli, A.; Gencel, O. Hybrid effect of micro-steel and basalt fibers on physico-mechanical properties and durability of mortars with silica fume. Case Stud. Constr. Mater. 2021, 15, e00649. [Google Scholar] [CrossRef]
- Horňáková, M.; Lehner, P. Relationship of Surface and Bulk Resistivity in the Case of Mechanically Damaged Fibre Reinforced Red Ceramic Waste Aggregate Concrete. Materials 2020, 13, 5501. [Google Scholar] [CrossRef] [PubMed]
- Shelar, A.B.; Mahindrakar, A.B.; Neeraja, D. Sustainable alternatives in concrete along with the use of medicinal plant Sapindus Mukorossi as a green workability agent. Innov. Infrastruct. Solut. 2021, 6, 228. [Google Scholar] [CrossRef]
- Correia, A.A.S.; Oliveira, P.J.V.; Custódio, D.G. Effect of polypropylene fibres on the compressive and tensile strength of a soft soil, artificially stabilised with binders. Geotext. Geomembr. 2015, 43, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Correia, A.A.S.; Oliveira, P.J.V.; Teles, J.M.N.P.C.; Pedro, A.M.G. Strength of a stabilised soil reinforced with steel fibres. Proc. Inst. Civ. Eng.-Geotech. Eng. 2017, 170, 312–321. [Google Scholar] [CrossRef]
- Correia, A.A.S.; Venda Oliveira, P.J.; Lemos, L.J.L. Strength assessment in chemically stabilized soft soils. ICE—Geotech. Eng. 2019, 172, 218–227. [Google Scholar] [CrossRef]
- Güllü, H.; Khudir, A. Effect of freeze-thaw cycles on unconfined compressive strength of fine-grained soil treated with jute fibre, steel fibre and lime. Cold Reg. Sci. Technol. 2014, 106–107, 55–65. [Google Scholar] [CrossRef]
- Consoli, N.C.; Moraes, R.R.; Festugato, L. Parameters controlling tensile and compressive strength of fibre-reinforced cemented soil. J. Mater. Civ. Eng. 2013, 25, 1568–1573. [Google Scholar] [CrossRef]
- Consoli, N.C.; De Moraes, R.R.; Festugato, L. Variables controlling strength of fibre-reinforced cemented soils. Proc. Inst. Civ. Eng.-Ground Improv. 2013, 166, 221–232. [Google Scholar] [CrossRef]
- Olgun, M. Effects of polypropylene fibre inclusion on the strength and volume change characteristics of cement-fly ash stabilized clay soil. Geosynth. Int. 2013, 20, 263–275. [Google Scholar] [CrossRef]
- Park, S. Unconfined compressive strength and ductility of fibre-reinforced cemented sand. Constr. Build. Mater. 2011, 25, 1134–1138. [Google Scholar] [CrossRef]
- Consoli, N.C.; Moraes, R.R.; Festugato, L. Split tensile strength of monofilament polypropylene fibre-reinforced cemented sandy soils. Geosynth. Int. 2011, 18, 57–62. [Google Scholar] [CrossRef]
- Consoli, N.C.; Vendruscolo, M.A.; Fonini, A.; Rosa, F.D. Fiber reinforcement effects on sand considering a wide cementation range. Geotext. Geomembr. 2009, 27, 196–203. [Google Scholar] [CrossRef]
- Torregrosa, A.; García-Cuevas, L.; Quintero, P.; Cremades, A. On the application of artificial neural network for the development of a nonlinear aeroelastic model. Aerosp. Sci. Technol. 2021, 115, 106845. [Google Scholar] [CrossRef]
- Deiss, L.; Margenot, A.J.; Culman, S.W.; Demyan, M.S. Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy. Geoderma 2020, 365, 114227. [Google Scholar] [CrossRef]
- Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C.; Villa-Vialaneix, N. Random Forests for Big Data. Big Data Res. 2017, 9, 28–46. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Roy, S.; Chowdhury, S. A neural network-based intelligent cognitive state recognizer for confidence-based e-learning system. Neural Comput. Appl. 2016, 29, 205–219. [Google Scholar] [CrossRef]
- Murthy, V.M.S.R.; Kumar, A.; Sinha, P.K. Prediction of throw in bench blasting using neural networks: An approach. Neural Comput. Appl. 2016, 29, 143–156. [Google Scholar] [CrossRef]
- Kang, F.; Li, J.-S.; Wang, Y.; Li, J. Extreme learning machine based surrogate model for analyzing system reliability of soil slopes. Eur. J. Environ. Civ. Eng. 2017, 21, 1341–1362. [Google Scholar] [CrossRef]
- Tinoco, J.; Parente, M.; Correia, A.G.; Cortez, P.; Toll, D. Predictive and prescriptive analytics in transportation geotechnics: Three case studies. Transp. Eng. 2021, 5, 100074. [Google Scholar] [CrossRef]
- Tinoco, J.; de Granrut, M.; Dias, D.; Miranda, T.; Simon, A.-G. Piezometric level prediction based on data mining techniques. Neural Comput. Appl. 2020, 32, 4009–4024. [Google Scholar] [CrossRef]
- Tinoco, J.; Correia, A.G.; Cortez, P.; Toll, D.G. Stability Condition Identification of Rock and Soil Cutting Slopes Based on Soft Computing. J. Comput. Civ. Eng. 2018, 32, 04017088. [Google Scholar] [CrossRef] [Green Version]
- Tinoco, J.; Correia, A.G.; Cortez, P.; Toll, D.G. Data-Driven Model for Stability Condition Prediction of Soil Embankments Based on Visual Data Features. J. Comput. Civ. Eng. 2018, 32, 04018027. [Google Scholar] [CrossRef] [Green Version]
- Tinoco, J.; Alberto, A.; da Venda, P.; Correia, A.G.; Lemos, L. A novel approach based on soft computing techniques for unconfined compression strength prediction of soil cement mixtures. Neural Comput. Appl. 2020, 32, 8985–8991. [Google Scholar] [CrossRef]
- Tinoco, J.; Correia, A.G.; Cortez, P. Support vector machines applied to uniaxial compressive strength prediction of jet grouting columns. Comput. Geotech. 2014, 55, 132–140. [Google Scholar] [CrossRef]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Werbos, P. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Dissertation, Harvard University, Cambridge, MA, USA, 1974. [Google Scholar]
- Cortes, C.; Vapnik, V. Support vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Akbarzadeh, S.; Paap, A.; Ahderom, S.; Apopei, B.; Alameh, K. Plant discrimination by Support Vector Machine classifier based on spectral reflectance. Comput. Electron. Agric. 2018, 148, 250–258. [Google Scholar] [CrossRef]
- Jiang, P.; Huang, Y.; Liu, X. Intermittent demand forecasting for spare parts in the heavy-duty vehicle industry: A support vector machine model. Int. J. Prod. Res. 2020. [Google Scholar] [CrossRef]
- Cherkassky, V.; Ma, Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 2004, 17, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.; Linoff, G. Mastering Data Mining: The Art and Science of Customer Relationships Management; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; CRC Press: Wadsworth, OH, USA; Belmont, Australian, 1984. [Google Scholar]
- Deisenroth, M.P.; Faisal, A.A.; Ong, C.S. Mathematics for Machine Learning; Cambridge University Press (CUP): Cambridge, UK, 2020; p. 391. [Google Scholar]
- Venables, W.N.; Smith, D.M.; R Development Core Team. An Introduction to R.: Notes on R, A Programming Environment for Data Analysis and Graphics; Network Theory Ltd: Godalming, UK, 2021. [Google Scholar]
- Cortez, P. Data mining with neural networks and support vector machines using the r-rminer tool. In Advances in Data Mining: Applications and Theoretical Aspects, Proceedings of the 10th Industrial Conference on Data Mining, Berlin, Germany, 12–14 July 2010; Perner, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 572–583. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- Bi, J.; Bennett, K.P. Regression error characteristic curves. In Proceedings of the Twentieth International Conference on Machine Learning, Washington, DC, USA, 21–24 August 2003; pp. 43–50. [Google Scholar]
- Cortez, P.; Embrechts, M.J. Using sensitivity analysis and visualization techniques to open black box data mining models. Inf. Sci. 2013, 225, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Venda Oliveira, P.J.; Anunciação, G.R.; Correia, A.A.S. Effect of cyclic loading frequency on the behavior of a stabilized sand reinforced with polypropylene and sisal fibers. J. Mater. Civ. Eng. 2021. [Google Scholar]
- Oliveira, P.V.; Correia, A.; Teles, J.M.; Pedro, A. Effect of cyclic loading on the behaviour of a chemically stabilised soft soil reinforced with steel fibres. Soil Dyn. Earthq. Eng. 2017, 92, 122–125. [Google Scholar] [CrossRef]
- Kitazume, M.; Terashi, M. The Deep Mixing Methodd Principle, Design and Construction; CRC Press/Balkema: Leiden, The Netherlands, 2002. [Google Scholar]
- Sariosseiri, F.; Muhunthan, B. Effect of cement treatment on geotechnical properties of some Washington State soils. Eng. Geol. 2009, 104, 119–125. [Google Scholar] [CrossRef]
- Lee, F.H.; Lee, Y.; Chew, S.-H.; Yong, K.-Y. Strength and Modulus of Marine Clay-Cement Mixes. J. Geotech. Geoenviron. Eng. 2005, 131, 178–186. [Google Scholar] [CrossRef]
- Lorenzo, G.A.; Bergado, D.T. Fundamental Parameters of Cement-Admixed Clay—New Approach. J. Geotech. Geoenviron. Eng. 2004, 130, 1042–1050. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Q. The behaviour of organic matter in the process of soft soil stabilization using cement. Bull. Int. Assoc. Eng. Geol. 2005, 65, 445–448. [Google Scholar] [CrossRef]
- Kaniraj, S.R.; Havanaji, V.J. Behavior of cement-stabilized fiber-reinforced fly ash-soil mixtures. J. Geotech. Geoenviron. Eng. 2001, 127. [Google Scholar] [CrossRef]
- Khattak, M.J.; Alrashidi, M. Durability and mechanistic characteristics of fiber reinforced soil-cement mixtures. Int. J. Pavement Eng. 2006, 7, 53–62. [Google Scholar] [CrossRef]
- Kumar, A.; Walia, B.S.; Bajaj, A. Influence of Fly Ash, Lime, and Polyester Fibers on Compaction and Strength Properties of Expansive Soil. J. Mater. Civ. Eng. 2007, 19, 242–248. [Google Scholar] [CrossRef]
Variable | Minimum | Maximum | Mean | Std. Deviation | ||||
---|---|---|---|---|---|---|---|---|
UCS | ITS | UCS | ITS | UCS | ITS | UCS | ITS | |
%Sand | 14.00 | 14.00 | 100.00 | 97.82 | 36.41 | 37.83 | 33.23 | 35.41 |
%Silt | 0.00 | 1.77 | 61.00 | 61.00 | 45.49 | 44.26 | 23.56 | 25.07 |
%Clay | 0.00 | 0.41 | 25.00 | 25.00 | 18.10 | 17.91 | 10.09 | 10.34 |
%OM | 0.00 | 0.24 | 13.05 | 13.05 | 8.01 | 7.79 | 5.12 | 4.93 |
WLL | 0.00 | 0.00 | 80.00 | 80.00 | 54.68 | 55.49 | 32.10 | 33.07 |
WLP | 0.00 | 0.00 | 48.80 | 42.90 | 32.97 | 31.61 | 19.13 | 18.61 |
ω0 | 14.20 | 14.20 | 113.00 | 80.87 | 67.05 | 63.85 | 27.41 | 29.23 |
aw | 7.52 | 7.52 | 73.98 | 71.50 | 25.91 | 22.34 | 22.03 | 21.22 |
Dkg.m3 | 75.00 | 75.00 | 500.00 | 500.00 | 236.78 | 221.81 | 116.86 | 113.19 |
ω0/aw | 1.09 | 1.13 | 8.85 | 8.85 | 4.27 | 4.72 | 3.20 | 3.47 |
t | 3.00 | 3.00 | 28.00 | 28.00 | 25.02 | 24.17 | 7.36 | 8.16 |
Lfiber | 12.00 | 12.00 | 30.00 | 30.00 | 19.72 | 22.51 | 8.87 | 8.82 |
Tfiber | 0.19 | 0.33 | 13.96 | 13.96 | 2.41 | 2.85 | 2.70 | 2.89 |
Fkg/m3 | 2.00 | 10.00 | 150.00 | 150.00 | 29.62 | 35.43 | 27.45 | 28.17 |
fct_fiber | 250.00 | 250.00 | 1345.00 | 1345.00 | 684.69 | 838.70 | 468.65 | 456.06 |
Efiber | 3.70 | 3.70 | 210.00 | 210.00 | 92.36 | 124.31 | 98.61 | 96.97 |
Output | 6.00 | 1.40 | 5172.30 | 676.89 | 1451.15 | 251.90 | 1391.01 | 232.12 |
Model | Hyperparameters | Time (s) | ||
---|---|---|---|---|
UCS | ITS | UCS | ITS | |
ANN | ||||
SVM | ||||
RF | ||||
MR | - | - |
Model | MAE | RMSE | R2 | |||
---|---|---|---|---|---|---|
UCS | ITS | UCS | ITS | UCS | ITS | |
ANN | 158.19 ± 46.73 | 23.62 ± 4.32 | 310.26 ± 159.03 | 42.00 ± 11.23 | 0.95 ± 0.05 | 0.97 ± 0.02 |
SVM | 201.06 ± 37.68 | 33.17 ± 2.74 | 355.70 ± 85.68 | 54.58 ± 5.01 | 0.93 ± 0.03 | 0.94 ± 0.01 |
RF | 197.06 ± 8.59 | 31.80 ± 2.74 | 302.78 ± 12.56 | 50.94 ± 7.61 | 0.95 ± 0.00 | 0.95 ± 0.02 |
MR | 472.99 ± 52.27 | 66.03 ± 52.27 | 672.27 ± 187.19 | 88.26 ± 21.67 | 0.78 ± 0.10 | 0.86 ± 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tinoco, J.; Correia, A.A.S.; Venda Oliveira, P.J. Soil-Cement Mixtures Reinforced with Fibers: A Data-Driven Approach for Mechanical Properties Prediction. Appl. Sci. 2021, 11, 8099. https://doi.org/10.3390/app11178099
Tinoco J, Correia AAS, Venda Oliveira PJ. Soil-Cement Mixtures Reinforced with Fibers: A Data-Driven Approach for Mechanical Properties Prediction. Applied Sciences. 2021; 11(17):8099. https://doi.org/10.3390/app11178099
Chicago/Turabian StyleTinoco, Joaquim, António Alberto S. Correia, and Paulo J. Venda Oliveira. 2021. "Soil-Cement Mixtures Reinforced with Fibers: A Data-Driven Approach for Mechanical Properties Prediction" Applied Sciences 11, no. 17: 8099. https://doi.org/10.3390/app11178099
APA StyleTinoco, J., Correia, A. A. S., & Venda Oliveira, P. J. (2021). Soil-Cement Mixtures Reinforced with Fibers: A Data-Driven Approach for Mechanical Properties Prediction. Applied Sciences, 11(17), 8099. https://doi.org/10.3390/app11178099