Next Article in Journal
Common Gabor Features for Image Watermarking Identification
Previous Article in Journal
Tunable Temperature Characteristic of Terahertz Bragg Fiber Filled with Liquid Water
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Correction

Correction: Orsi et al. Carbon Nanotubes under Scrutiny: Their Toxicity and Utility in Mesothelioma Research. Appl. Sci. 2020, 10, 4513

Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
*
Author to whom correspondence should be addressed.
Appl. Sci. 2021, 11(18), 8307; https://doi.org/10.3390/app11188307
Submission received: 15 June 2021 / Accepted: 17 June 2021 / Published: 7 September 2021

1. Incorrect Title

There is an error in the title [1]. The correct title of the article is “Carbon Nanotubes under Scrutiny: Their Toxicity and Utility in Mesothelioma Research”. The editors and authors apologize for this error and state that the scientific conclusions are unaffected. The original article has been updated.

2. Figure Legend

In the original article, there were mistakes in the legends for Figures 1–4. The figure legends were not described comprehensively. The correct legends appear below. The editors and authors apologize for any inconvenience caused and state that the scientific conclusions are unaffected. The original article has been updated.
Figure 1. Historical progression of CNT-induced toxicity. Timeline summarizing the discoveries on CNT toxicity obtained by LTAP teams (UCLouvain, Brussels, Belgium) and their scientific collaborators from around the world. For this collective work, we used diverse and relevant in vivo and in vitro models and CNT possessing diverse morphological and physico-chemical properties.
Figure 2. A new pathological pathway governs carcinogenesis induced by mesotheliomagenic needled CNT-N. Persistent inflammation and immunosuppression orchestrate carcinogenesis and mesothelioma. Toxic CNT-N induce an inflammatory cascade (in blue) resulting in the influx of inflammatory macrophages and neutrophils. Sustained production of free radicals by these activated immune cells induces irreversible DNA damage. Pro-inflammatory cytokines are also considered as potent polypeptide growth factors for transformed mesothelial cells and angiogenesis. An unexpected conjoint immunosuppression (in red) is induced by mesotheliomagenic CNT. These early responses to CNT-N are characterized by persistent accumulation of immunosuppressive macrophages and monocytes and a sustained production of regulatory cytokines (i.e., IL-10 and TGF-β). These immunoregulatory components are incriminated in carcinogenesis by preventing host immune responses directed against transformed cells and favoring tumor growth.
Figure 3. Mesotheliomagenic CNT-N and non-mesotheliomagenic CNT-T induce early comparable peritoneal lesions and macrophage accumulation in rats. Wistar rats untreated or injected (i.p) with CNT-N or CNT-T (2 mg) were sacrificed (day 15) and peritoneal tissues (diaphragm) were harvested, fixed in paraformaldehyde and embedded in paraffin. 5 µm sections were stained with classical H&E coloration (A-D-G for controls, B-E-H for CNT-N and C-F-I for CNT-T, magnification ×4 first line, ×40 other lines). The red arrows indicate granulomas containing CNT crystalline structures within the connective tissue (selected from the frame of A-B-C panels). Granulomas mainly comprise macrophages around nanotube aggregates (G-H-I). For macrophage identification, 5 µm sections were incubated with mouse anti-rat CD68 antibody (Abcam monoclonal) and secondary antibody donkey anti-mouse (Jackson ImmunoReserch) coupled with HRP. After incubation with AlexaFluor Tyramide 488, a counterstaining with Hoechst44432 dye was performed. Stained slides were digitalized using a Panoramic 250 FlashIII scanner (3DHistech) at ×20 magnification.
Figure 4. New opportunities to use CNT for delineating specific macrophage immune pathways specifically associated with malignant mesothelioma. Cellular and molecular characterization of macrophage subpopulations by using next-generation sequencing (NGS) technologies. Peritoneal macrophages from CNT-N or CNT-T-treated rats (day 15) were isolated from peritoneal cell suspensions using flow cytometry cell sorting (FACSAria III, BD Biosciences) and APC-antibodies specific for CD68 (mouse anti-rat CD68 antibody, Abcam monoclonal). Cytocentrifuge preparations of purified macrophages were stained with Diff-Quick. RNA was isolated using Qiagen kits and libraries were prepared and sequenced using the Illumina platform. The gene count matrix was transformed in fold-change-related tables or barcode plots.

3. Incorrect Affiliation

In the published article, there was an error in affiliation. Instead of “Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium”, the affiliation should be “Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), 1348 Brussels, Belgium”. The editors and authors apologize for any inconvenience caused and state that the scientific conclusions are unaffected. The original article has been updated.

4. Incorrect Reference

In the original article, the references # 1–39 were missing (Sections 1 and 2 in the text). We have cited references 1–39 in the updated main text, and added references 1–39 in the Reference part. The references 1–39 appear below.
  • Qin, L.C.; Zhao, X.; Hirahara, K.; Miyamoto, Y.; Ando, Y.; Iijima, S. The smallest carbon nanotube. Nature 2000, 408, 50, doi:10.1038/35040699.
  • Amelinckx, S.; Zhang, X.B.; Bernaerts, D.; Zhang, X.F.; Ivanov, V.; Nagy, J.B. A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 1994, 265, 635–639, doi:10.1126/science.265.5172.635.
  • Simon, J.; Flahaut, E.; Golzio, M. Overview of Carbon Nanotubes for Biomedical Applications. Materials 2019, 12, 624, doi:10.3390/ma12040624.
  • Mohajeri, M.; Behnam, B.; Sahebkar, A. Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials. J. Cell Physiol. 2018, 234, 298–319, doi:10.1002/jcp.26899.
  • King, S.G.; McCafferty, L.; Tas, M.O.; Snashall, K.; Chen, J.S.; Shkunov, M.; Stolojan, V.; Silva, S.R.P. Low-Cost Catalyst Ink for Simple Patterning and Growth of High-Quality Single- and Double-Walled Carbon Nanotubes. ACS Appl. Mater. Interfaces 2020, 12, 11898–11906, doi:10.1021/acsami.9b19957.
  • Kong, Y.; Nanjundan, A.K.; Liu, Y.; Song, H.; Huang, X.; Yu, C. Modulating Ion Diffusivity and Electrode Conductivity of Carbon Nanotube@Mesoporous Carbon Fibers for High Performance Aluminum-Selenium Batteries. Small 2019, 15, e1904310, doi:10.1002/smll.201904310.
  • Luo, Y.; Wang, K.; Li, Q.; Fan, S.; Wang, J. Macroscopic Carbon Nanotube Structures for Lithium Batteries. Small 2020, 16, e1902719, doi:10.1002/smll.201902719.
  • Yin, Z.; Cui, C.; Chen, H.; Duoni; Yu, X.; Qian, W. The Application of Carbon Nanotube/Graphene-Based Nanomaterials in Wastewater Treatment. Small 2020, 16, e1902301, doi:10.1002/smll.201902301.
  • Baby, R.; Saifullah, B.; Hussein, M.Z. Carbon Nanomaterials for the Treatment of Heavy Metal-Contaminated Water and Environmental Remediation. Nanoscale Res. Lett. 2019, 14, 341, doi:10.1186/s11671-019-3167-8.
  • Silva, R.C.F.; Ardisson, J.D.; Cotta, A.A.C.; Araujo, M.H.; Teixeira, A.P.C. Use of iron mining tailings from dams for carbon nanotubes synthesis in fluidized bed for 17alpha-ethinylestradiol removal. Environ. Pollut. 2020, 260, 114099, doi:10.1016/j.envpol.2020.114099.
  • Venkataraman, A.; Amadi, E.V.; Chen, Y.; Papadopoulos, C. Carbon Nanotube Assembly and Integration for Applications. Nanoscale Res. Lett. 2019, 14, 220, doi:10.1186/s11671-019-3046-3.
  • Maiti, D.; Tong, X.; Mou, X.; Yang, K. Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Front. Pharmacol. 2018, 9, 1401, doi:10.3389/fphar.2018.01401.
  • Hu, Y.; Dominguez, C.M.; Bauer, J.; Weigel, S.; Schipperges, A.; Oelschlaeger, C.; Willenbacher, N.; Keppler, S.; Bastmeyer, M.; Heissler, S.; et al. Carbon-nanotube reinforcement of DNA-silica nanocomposites yields programmable and cell-instructive biocoatings. Nat. Commun. 2019, 10, 5522, doi:10.1038/s41467-019-13381-1.
  • Pei, B.; Wang, W.; Dunne, N.; Li, X. Applications of Carbon Nanotubes in Bone Tissue Regeneration and Engineering: Superiority, Concerns, Current Advancements, and Prospects. Nanomaterials 2019, 9, doi:10.3390/nano9101501.
  • Takagi, A.; Hirose, A.; Nishimura, T.; Fukumori, N.; Ogata, A.; Ohashi, N.; Kitajima, S.; Kanno, J. Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotube. J. Toxicol. Sci. 2008, 33, 105–116, doi:10.2131/jts.33.105.
  • Muller, J.; Huaux, F.; Moreau, N.; Misson, P.; Heilier, J.F.; Delos, M.; Arras, M.; Fonseca, A.; Nagy, J.B.; Lison, D. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol. 2005, 207, 221–231, doi:10.1016/j.taap.2005.01.008.
  • Poland, C.A.; Duffin, R.; Kinloch, I.; Maynard, A.; Wallace, W.A.; Seaton, A.; Stone, V.; Brown, S.; Macnee, W.; Donaldson, K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 2008, 3, 423–428, doi:10.1038/nnano.2008.111.
  • Shvedova, A.A.; Castranova, V.; Kisin, E.R.; Schwegler-Berry, D.; Murray, A.R.; Gandelsman, V.Z.; Maynard, A.; Baron, P. Exposure to carbon nanotube material: Assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Health A 2003, 66, 1909–1926, doi:10.1080/713853956.
  • Lam, C.W.; James, J.T.; McCluskey, R.; Hunter, R.L. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 2004, 77, 126–134, doi:10.1093/toxsci/kfg243.
  • Shvedova, A.A.; Kisin, E.R.; Mercer, R.; Murray, A.R.; Johnson, V.J.; Potapovich, A.I.; Tyurina, Y.Y.; Gorelik, O.; Arepalli, S.; Schwegler-Berry, D.; et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2005, 289, L698–L708, doi:10.1152/ajplung.00084.2005.
  • Donaldson, K.; Poland, C.A.; Murphy, F.A.; MacFarlane, M.; Chernova, T.; Schinwald, A. Pulmonary toxicity of carbon nanotubes and asbestos—Similarities and differences. Adv. Drug Deliv. Rev. 2013, 65, 2078–2086, doi:10.1016/j.addr.2013.07.014.
  • Mossman, B.T. Mechanistic in vitro studies: What they have told us about carcinogenic properties of elongated mineral particles (EMPs). Toxicol. Appl. Pharmacol. 2018, 361, 62–67, doi:10.1016/j.taap.2018.07.018.
  • Huaux, F. Emerging Role of Immunosuppression in Diseases Induced by Micro- and Nano-Particles: Time to Revisit the Exclusive Inflammatory Scenario. Front. Immunol. 2018, 9, 2364, doi:10.3389/fimmu.2018.02364.
  • Huaux, F. Innate immunity to inhaled particles: A new paradigm of collective recognition. Curr. Opin. Toxicol. 2018, 10, 84–90.
  • Pavan, C.; Delle Piane, M.; Gullo, M.; Filippi, F.; Fubini, B.; Hoet, P.; Horwell, C.J.; Huaux, F.; Lison, D.; Lo Giudice, C.; et al. The puzzling issue of silica toxicity: Are silanols bridging the gaps between surface states and pathogenicity? Part. Fibre Toxicol. 2019, 16, 32, doi:10.1186/s12989-019-0315-3.
  • Rabolli, V.; Lison, D.; Huaux, F. The complex cascade of cellular events governing inflammasome activation and IL-1beta processing in response to inhaled particles. Part. Fibre Toxicol. 2016, 13, 40, doi:10.1186/s12989-016-0150-8.
  • Rabolli, V.; Badissi, A.A.; Devosse, R.; Uwambayinema, F.; Yakoub, Y.; Palmai-Pallag, M.; Lebrun, A.; De Gussem, V.; Couillin, I.; Ryffel, B.; et al. The alarmin IL-1alpha is a master cytokine in acute lung inflammation induced by silica micro- and nanoparticles. Part. Fibre Toxicol. 2014, 11, 69, doi:10.1186/s12989-014-0069-x.
  • Vietti, G.; Lison, D.; van den Brule, S. Mechanisms of lung fibrosis induced by carbon nanotubes: Towards an Adverse Outcome Pathway (AOP). Part. Fibre Toxicol. 2016, 13, 11, doi:10.1186/s12989-016-0123-y.
  • Lebrun, A.; Lo Re, S.; Chantry, M.; Izquierdo Carerra, X.; Uwambayinema, F.; Ricci, D.; Devosse, R.; Ibouraadaten, S.; Brombin, L.; Palmai-Pallag, M.; et al. CCR2(+) monocytic myeloid-derived suppressor cells (M-MDSCs) inhibit collagen degradation and promote lung fibrosis by producing transforming growth factor-beta1. J. Pathol. 2017, 243, 320–330, doi:10.1002/path.4956.
  • Vietti, G.; Ibouraadaten, S.; Palmai-Pallag, M.; Yakoub, Y.; Piret, J.P.; Marbaix, E.; Lison, D.; van den Brule, S. Towards predicting the lung fibrogenic activity of MWCNT: Key role of endocytosis, kinase receptors and ERK 1/2 signaling. Nanotoxicology 2016, 10, 488–500, doi:10.3109/17435390.2015.1088588.
  • Nikota, J.; Banville, A.; Goodwin, L.R.; Wu, D.; Williams, A.; Yauk, C.L.; Wallin, H.; Vogel, U.; Halappanavar, S. Stat-6 signaling pathway and not Interleukin-1 mediates multi-walled carbon nanotube-induced lung fibrosis in mice: Insights from an adverse outcome pathway framework. Part. Fibre Toxicol. 2017, 14, 37, doi:10.1186/s12989-017-0218-0.
  • Guseva Canu, I.; Batsungnoen, K.; Maynard, A.; Hopf, N.B. State of knowledge on the occupational exposure to carbon nanotubes. Int. J. Hyg. Environ. Health 2020, 225, 113472, doi:10.1016/j.ijheh.2020.113472.
  • Vietti, G.; Ibouraadaten, S.; Palmai-Pallag, M.; Yakoub, Y.; Bailly, C.; Fenoglio, I.; Marbaix, E.; Lison, D.; van den Brule, S. Towards predicting the lung fibrogenic activity of nanomaterials: Experimental validation of an in vitro fibroblast proliferation assay. Part. Fibre Toxicol. 2013, 10, 52, doi:10.1186/1743-8977-10-52.
  • Fenoglio, I.; Aldieri, E.; Gazzano, E.; Cesano, F.; Colonna, M.; Scarano, D.; Mazzucco, G.; Attanasio, A.; Yakoub, Y.; Lison, D.; et al. Thickness of multiwalled carbon nanotubes affects their lung toxicity. Chem. Res. Toxicol. 2012, 25, 74–82, doi:10.1021/tx200255h.
  • Murphy, F.A.; Poland, C.A.; Duffin, R.; Donaldson, K. Length-dependent pleural inflammation and parietal pleural responses after deposition of carbon nanotubes in the pulmonary airspaces of mice. Nanotoxicology 2013, 7, 1157–1167, doi:10.3109/17435390.2012.713527.
  • Duke, K.S.; Thompson, E.A.; Ihrie, M.D.; Taylor-Just, A.J.; Ash, E.A.; Shipkowski, K.A.; Hall, J.R.; Tokarz, D.A.; Cesta, M.F.; Hubbs, A.F.; et al. Role of p53 in the chronic pulmonary immune response to tangled or rod-like multi-walled carbon nanotubes. Nanotoxicology 2018, 12, 975–991, doi:10.1080/17435390.2018.1502830.
  • Muller, J.; Huaux, F.; Fonseca, A.; Nagy, J.B.; Moreau, N.; Delos, M.; Raymundo-Pinero, E.; Beguin, F.; Kirsch-Volders, M.; Fenoglio, I.; et al. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: Toxicological aspects. Chem. Res. Toxicol. 2008, 21, 1698–1705, doi:10.1021/tx800101p.
  • Fenoglio, I.; Greco, G.; Tomatis, M.; Muller, J.; Raymundo-Pinero, E.; Beguin, F.; Fonseca, A.; Nagy, J.B.; Lison, D.; Fubini, B. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: Physicochemical aspects. Chem. Res. Toxicol. 2008, 21, 1690–1697, doi:10.1021/tx800100s.
The previous references # 1–39 of the original version (Sections 3 and 4 in the text) were consequently renumbered. They now correspond to references # 40–116, accordingly.
In the original article, the reference 12 (old number) or 51 (new number) was incorrectly written as Grosse, Y.; Loomis, D.; Guyton, K.Z.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Scoccianti, C.; Mattock, H.; et al. International Agency for Research on Cancer Monograph Working, G. Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. Lancet Oncol. 2014, 15, 1427–1428. It should be Grosse, Y.; Loomis, D.; Guyton, K.Z.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Scoccianti, C.; Mattock, H.; et al. Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. Lancet Oncol. 2014, 15, 1427–1428, doi:10.1016/S1470-2045(14)71109-X.
In the original article, the reference 13 (old number) or 52 (new number) was incorrectly written as Some Nanomaterials and Some Fibres; World Health Organization: Lyon, France, 2017. It should be IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some Nanomaterials and Some Fibres; PMID: 31829532; International Agency for Research on Cancer: Lyon, France, 2017.
The editors and authors apologize for any inconvenience caused and state that the scientific conclusions are unaffected. The original article has been updated.

5. Text Correction

There were two errors in the original article. The name of the funder was incorrectly written. The abbreviation of one of the authors François Huaux was incorrectly written.
A correction has been made to Funding.
This work was funded by the Actions de Recherche Concertées, Fédération Wallonie-Bruxelles (ARC 19/24-098, CYTAID), Fondation Contre le Cancer (2019-219), Fonds de la Recherche Scientifique (FNRS, PDR T.0119.13), ANSES (Agence nationale française de sécurité sanitaire de l’alimentation, de l’environnement et du travail, MacFibOsis) and European Commission under H2020 project (Contract no. 874707, Eximious). F.H. is a Senior Research Associate with the FNRS, Belgium.
One sentence is now added to clarify a paragraph. A correction has been made to 3.1. Mesothelioma and Particles (beginning of last paragraph).
Some CNT have been incriminated as being responsible for MM because their physically similarity to asbestos fibers.
The authors apologize for any inconvenience caused and state that the scientific conclusions are unaffected. The original article has been updated.

Conflicts of Interest

The authors declare no conflict of interest.

Reference

  1. Orsi, M.; Al Hatem, C.; Leinardi, R.; Huaux, F. Carbon nanotubes under scrutiny: Their toxicity and utility in mesothelioma research. Appl. Sci. 2020, 10, 4513. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Orsi, M.; Al Hatem, C.; Leinardi, R.; Huaux, F. Correction: Orsi et al. Carbon Nanotubes under Scrutiny: Their Toxicity and Utility in Mesothelioma Research. Appl. Sci. 2020, 10, 4513. Appl. Sci. 2021, 11, 8307. https://doi.org/10.3390/app11188307

AMA Style

Orsi M, Al Hatem C, Leinardi R, Huaux F. Correction: Orsi et al. Carbon Nanotubes under Scrutiny: Their Toxicity and Utility in Mesothelioma Research. Appl. Sci. 2020, 10, 4513. Applied Sciences. 2021; 11(18):8307. https://doi.org/10.3390/app11188307

Chicago/Turabian Style

Orsi, Micaela, Chafik Al Hatem, Riccardo Leinardi, and François Huaux. 2021. "Correction: Orsi et al. Carbon Nanotubes under Scrutiny: Their Toxicity and Utility in Mesothelioma Research. Appl. Sci. 2020, 10, 4513" Applied Sciences 11, no. 18: 8307. https://doi.org/10.3390/app11188307

APA Style

Orsi, M., Al Hatem, C., Leinardi, R., & Huaux, F. (2021). Correction: Orsi et al. Carbon Nanotubes under Scrutiny: Their Toxicity and Utility in Mesothelioma Research. Appl. Sci. 2020, 10, 4513. Applied Sciences, 11(18), 8307. https://doi.org/10.3390/app11188307

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop