FTIR Spectroscopy for Identification and Intra-Species Characterization of Serpula lacrymans
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Fungal Strains and Growth Conditions
2.2. FTIR Analysis
2.3. Statistical Analysis
3. Results
3.1. Fourier Transformed Infrared (FTIR) Spectroscopy
3.2. Partial Least Square Discriminant Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Krzyzanowski, N.; Oduyemi, K.; Jack, N.; Ross, N.; Palfreyman, J. The management and control of dry rot: A survey of practitioners’ views and experiences. J. Environ. Manag. 1999, 57, 143–154. [Google Scholar] [CrossRef]
- Singh, J. Dry rot and other wood-destroying fungi: Their occurrence, biology, pathology and control. Indoor Built Environ. 1999, 8, 3–20. [Google Scholar] [CrossRef]
- Schmidt, O. Indoor wood-decay basidiomycetes: Damage, causal fungi, physiology, identification and characterization, prevention and control. Mycol. Prog. 2007, 6, 261–279. [Google Scholar] [CrossRef]
- Watkinson, S.; Eastwood, D. Serpula lacrymans, Wood and Buildings. In Advances in Clinical Chemistry; Elsevier BV: Amsterdam, The Netherlands, 2012; Volume 78. [Google Scholar]
- Reinprecht, L. Biological Degradation of Wood, in Wood Deterioration, Protection and Maintenance; John Wiley & Sons, Ltd.: Oxford, UK, 2016; pp. 62–125. [Google Scholar]
- Maurice, S.; Le Floch, G.; Le Bras-Quéré, M.; Barbier, G. Improved molecular methods to characterise Serpula lacrymans and other Basidiomycetes involved in wood decay. J. Microbiol. Methods 2011, 84, 208–215. [Google Scholar] [CrossRef]
- Slimen, A.; Barboux, R.; Mihajlovski, A.; Moularat, S.; Leplat, J.; Bousta, F.; Di Martino, P. High diversity of fungi associated with altered wood materials in the hunting lodge of “La Muette“, Saint-Germain-en-Laye, France. Mycol. Prog. 2020, 19, 139–146. [Google Scholar] [CrossRef]
- Huckfeldt, T.; Schmidt, O. Identification key for European strand-forming house-rot fungi. Mycologist 2006, 20, 42–56. [Google Scholar] [CrossRef]
- Gabriel, J.; Švec, K. Occurrence of indoor wood decay basidiomycetes in Europe. Fungal Biol. Rev. 2017, 31, 212–217. [Google Scholar] [CrossRef]
- Schoch, C.L.; Robbertse, B.; Robert, V.; Vu, D.; Cardinali, G.; Irinyi, L.; Meyer, W.; Nilsson, R.H.; Hughes, K.; Miller, A.N.; et al. Finding needles in haystacks: Linking scientific names, reference specimens and molecular data for Fungi. Database 2014, 2014, bau061. [Google Scholar] [CrossRef] [PubMed]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of my-corrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- Schmidt, O.; Moreth, U. Species-specific PCR primers in the rDNA-ITS region as a diagnostic tool for Serpula lacrymans. Mycol. Res. 2000, 104, 69–72. [Google Scholar] [CrossRef]
- Bellemain, E.; Carlsen, T.; Brochmann, C.; Coissac, E.; Taberlet, P.; Kauserud, H. ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiol. 2010, 10, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manter, D.K.; Vivanco, J.M. Use of the ITS primers, ITS1F and ITS4, to characterize fungal abundance and diversity in mixed-template samples by qPCR and length heterogeneity analysis. J. Microbiol. Methods 2007, 71, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Horisawa, S.; Sakuma, Y.; Doi, S. Qualitative and quantitative PCR methods using species-specific primer for detection and identification of wood rot fungi. J. Wood Sci. 2009, 55, 133–138. [Google Scholar] [CrossRef]
- Naumann, D.; Helm, D.; Labischinski, H. Microbiological characterizations by FT-IR spectroscopy. Nat. Cell Biol. 1991, 351, 81–82. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; Fraga, M.E.; Kozakiewicz, Z.; Lima, N. Fourier transform infrared as a powerful technique for the identification and characterization of filamentous fungi and yeasts. Res. Microbiol. 2010, 161, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Shapaval, V.; Møretrø, T.; Suso, H.P.; Asli, A.W.; Schmitt, J.; Lillehaug, D.; Martens, H.; Böcker, U.; Kohler, A. A high-throughput microcultivation protocol for FTIR spectroscopic characterization and identification of fungi. J. Biophotonics 2010, 3, 512–521. [Google Scholar] [CrossRef]
- Lecellier, A.; Mounier, J.; Gaydou, V.; Castrec, L.; Barbier, G.; Ablain, W.; Manfait, M.; Toubas, D.; Sockalingum, G.D. Dif-ferentiation and identification of filamentous fungi by high-throughput FTIR spectroscopic analysis of mycelia. Int. J. Food Microbiol. 2014, 168–169, 32–41. [Google Scholar] [CrossRef]
- Lecellier, A.; Gaydou, V.; Mounier, J.; Hermet, A.; Castrec, L.; Barbier, G.; Ablain, W.; Manfait, M.; Toubas, D.; Sockalingum, G. Implementation of an FTIR spectral library of 486 filamentous fungi strains for rapid identification of molds. Food Microbiol. 2015, 45, 126–134. [Google Scholar] [CrossRef]
- Essendoubi, M.; Toubas, D.; Lepouse, C.; Leon, A.; Bourgeade, F.; Pinon, J.M.; Manfait, M.; Sockalingum, G.D. Epidemio-logical investigation and typing of Candida glabrata clinical isolates by FTIR spectroscopy. J. Microbiol. Methods. 2007, 71, 325–331. [Google Scholar] [CrossRef]
- Fischer, G.; Braun, S.; Thissen, R.; Dott, W. FT-IR spectroscopy as a tool for rapid identification and intra-species character-ization of airborne filamentous fungi. J. Microbiol. Methods 2006, 64, 63–77. [Google Scholar] [CrossRef]
- Garon, D.; El Kaddoumi, A.; Carayon, A.; Amiel, C. FT-IR Spectroscopy for Rapid Differentiation of Aspergillus flavus, Aspergillus fumigatus, Aspergillus parasiticus and Characterization of Aflatoxigenic Isolates Collected from Agricultural Environments. Mycopathologia 2010, 170, 131–142. [Google Scholar] [CrossRef]
- Shapaval, V.; Schmitt, J.; Møretrø, T.; Suso, H.P.; Skaar, I.; Åsli, A.W.; Lillehaug, D.; Kohler, A. Characterization of food spoilage fungi by FTIR spectroscopy. J. Appl. Microbiol. 2013, 114, 788–796. [Google Scholar] [CrossRef] [PubMed]
- Kogkaki, E.A.; Sofoulis, M.; Natskoulis, P.; Tarantilis, P.A.; Pappas, C.S.; Panagou, E.Z. Differentiation and identification of grape-associated black aspergilli using Fourier transform infrared (FT-IR) spectroscopic analysis of mycelia. Int. J. Food Microbiol. 2017, 259, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Naumann, A. A novel procedure for strain classification of fungal mycelium by cluster and artificial neural network analysis of Fourier transform infrared (FTIR) spectra. Analyst 2009, 134, 1215–1223. [Google Scholar] [CrossRef]
- Girometta, C.; Dondi, D.; Baiguera, R.M.; Bracco, F.; Branciforti, D.S.; Buratti, S.; Lazzaroni, S.; Savino, E. Characterization of mycelia from wood-decay species by TGA and IR spectroscopy. Cellulose 2020, 27, 6133–6148. [Google Scholar] [CrossRef]
- LOI n° 2014-366 du 24 mars 2014 pour l’accès au Logement et un Urbanisme Rénové. Available online: https://www.cnle.gouv.fr/loi-no-2014-366-du-24-mars-2014-1240.html (accessed on 24 June 2021).
- Bastert, J.; Korting, H.C.; Traenkle, P.; Schmalreck, A.F. Identification of dermatophytes by Fourier transform infrared spectroscopy (FT-IR). Mycoses 1999, 42, 525–528. [Google Scholar] [CrossRef]
- Cantu, D.; Carl Greve, L.; Labavitch, J.M.; Powell, A.L.T. Characterization of the cell wall of the ubiquitous plant patho-gen Botrytis cinerea. Mycol. Res. 2009, 113, 1396–1403. [Google Scholar] [CrossRef]
- Szeghalmi, A.; Kaminskyj, S.; Gough, K.M. A synchrotron FTIR microspectroscopy investigation of fungal hyphae grown under optimal and stressed conditions. Anal. Bioanal. Chem. 2006, 387, 1779–1789. [Google Scholar] [CrossRef]
- Mularczyk-Oliwa, M.; Bombalska, A.; Kaliszewski, M.; Włodarski, M.; Kwaśny, M.; Kopczyński, K.; Szpakowska, M.; Trafny, E.A. Rapid discrimination of several fungus species with FTIR spectroscopy and statistical analysis. Biuletyn W. A. T. 2013, 62, 71–80. [Google Scholar]
- Dahlberg, K.R.; Etten, J.L.V. Physiology and Biochemistry of Fungal Sporulation. Annu. Rev. Phytopathol. 1982, 20, 281–301. [Google Scholar] [CrossRef]
- Salman, A.; Tsror, L.; Pomerantz, A.; Moreh, R.; Mordechai, S.; Huleihel, M. FTIR spectroscopy for detection and identifi-cation of fungal phytopathogenes. Spectroscopy 2010, 24, 261–267. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, Z.; Shang, Z.; Zhao, J. Classification and identification of Rhodobryum roseum Limpr. and its adulterants based on fourier-transform infrared spectroscopy (FTIR) and chemometrics. PLoS ONE 2017, 12, e0172359. [Google Scholar] [CrossRef] [PubMed]
- Mariey, L.; Signolle, J.; Amiel, C.; Travert, J. Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics. Vib. Spectrosc. 2001, 26, 151–159. [Google Scholar] [CrossRef]
- Pena, R.; Lang, C.; Naumann, A.; Polle, A. Ectomycorrhizal identification in environmental samples of tree roots by Fouri-er-transform infrared (FTIR) spectroscopy. Front. Plant Sci. 2014, 5, 229. [Google Scholar] [CrossRef] [Green Version]
- Kümmerle, M.; Scherer, S.; Seiler, H. Rapid and Reliable Identification of Food-Borne Yeasts by Fourier-Transform Infrared Spectroscopy. Appl. Environ. Microbiol. 1998, 64, 2207–2214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Phylum | Strain Number 1 |
---|---|---|
Serpula lacrymans | Basidiomycota | UBOCC-A-110074 |
Serpula lacrymans | Basidiomycota | UBOCC-A-110108 |
Serpula lacrymans | Basidiomycota | UBOCC-A-111008 |
Serpula lacrymans | Basidiomycota | LRMH-RX-01 |
Serpula lacrymans | Basidiomycota | LRMH-SF-Ec3-003 |
Rhodonia placenta | Basidiomycota | LRMH-Op-001 |
Trichoderma harzianum | Ascomycota | LRMH-LV-Ec1-001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barboux, R.; Bousta, F.; Di Martino, P. FTIR Spectroscopy for Identification and Intra-Species Characterization of Serpula lacrymans. Appl. Sci. 2021, 11, 8463. https://doi.org/10.3390/app11188463
Barboux R, Bousta F, Di Martino P. FTIR Spectroscopy for Identification and Intra-Species Characterization of Serpula lacrymans. Applied Sciences. 2021; 11(18):8463. https://doi.org/10.3390/app11188463
Chicago/Turabian StyleBarboux, Rony, Faisl Bousta, and Patrick Di Martino. 2021. "FTIR Spectroscopy for Identification and Intra-Species Characterization of Serpula lacrymans" Applied Sciences 11, no. 18: 8463. https://doi.org/10.3390/app11188463
APA StyleBarboux, R., Bousta, F., & Di Martino, P. (2021). FTIR Spectroscopy for Identification and Intra-Species Characterization of Serpula lacrymans. Applied Sciences, 11(18), 8463. https://doi.org/10.3390/app11188463