Copper/Nickel-Decorated Olive Pit Biochar: One Pot Solid State Synthesis for Environmental Remediation
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Metallic Nanoparticle-Coated Biochar
2.2.1. Materials Characterization
2.2.2. Catalysis Assays
3. Results
3.1. General Strategy of the Work
3.2. Surface Morphology and Elemental Analysis
3.3. Phase Analysis
3.4. Thermal Stability
3.5. Potential Application: Proof of Concept of Heterogeneous Catalyzed Degradation of Methyl Orange Dye
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adeniyi, A.G.; Ighalo, J.O.; Onifade, D.V. Biochar from the Thermochemical Conversion of Orange (Citrus sinensis) Peel and Albedo: Product Quality and Potential Applications. Chem. Afr. 2020, 3, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Azeem, M.; Hassan, T.U.; Tahir, M.I.; Ali, A.; Jeyasundar, P.G.S.A.; Hussain, Q.; Bashir, S.; Mehmood, S.; Zhang, Z. Tea leaves biochar as a carrier of Bacillus cereus improves the soil function and crop productivity. Appl. Soil Ecol. 2021, 157, 103732. [Google Scholar] [CrossRef]
- Zubair, M.; Mu’azu, N.D.; Jarrah, N.; Blaisi, N.I.; Aziz, H.A.; AAl-Harthi, M. Adsorption Behavior and Mechanism of Methylene Blue, Crystal Violet, Eriochrome Black T, and Methyl Orange Dyes onto Biochar-Derived Date Palm Fronds Waste Produced at Different Pyrolysis Conditions. Water Air Soil Pollut. 2020, 231, 240. [Google Scholar] [CrossRef]
- Bagheri, A.; Abu-Danso, E.; Iqbal, J.; Bhatnagar, A. Modified biochar from Moringa seed powder for the removal of diclofenac from aqueous solution. Bhatnagar Environ. Sci. Pollut. Res. 2020, 27, 7318–7327. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Shan, R.; Li, X.; Pan, J.; Liu, X.; Deng, R.; Song, J. Characterization of 60 types of Chinese biomass waste and resultant biochars in terms of their candidacy for soil application. Gcb Bioenergy 2017, 9, 1423–1435. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Luong, D.X.; Bets, K.V.; Algozeeb, W.A.; Stanford, M.G.; Kittrell, C.; Chen, W.; Salvatierra, R.V.; Ren, M.; McHugh, E.A.; Advincula, P.A. Gram-scale bottom-up flash graphene synthesis. Nature 2020, 577, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.P.; Astruc, D. Biochar as a support for nanocatalysts and other reagents: Recent advances and applications. Coord. Chem. Rev. 2021, 426, 213585. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, P.; Shao, Q.; Takahashi, F.; Yoshikawa, K. In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier. Appl. Energy 2015, 160, 808–819. [Google Scholar] [CrossRef]
- Tan, G.; Wu, Y.; Liu, Y.; Xiao, D. Removal of Pb(II) ions from aqueous solution by manganese oxide coated rice straw biochar-A low-cost and highly effective sorbent. J. Taiwan Inst. Chem. Eng. 2018, 84, 85–92. [Google Scholar] [CrossRef]
- Guo, F.; Peng, K.; Liang, S.; Jia, X.; Jiang, X.; Qian, L. One-step synthesis of biomass activated char supported copper nanoparticles for catalytic cracking of biomass primary tar. Energy 2019, 180, 584–593. [Google Scholar] [CrossRef]
- Ge, X.; Ge, M.; Chen, X.; Qian, C.; Liu, X.; Zhou, S. Facile synthesis of hydrochar supported copper nanocatalyst for Ullmann C-N coupling reaction in water. Mol. Catal. 2020, 484, 110726. [Google Scholar] [CrossRef]
- Yeşiltepe, S.; Buğdaycı, M.; Yücel, O.; Şeşen, M.K. Recycling of Alkaline Batteries via a Carbothermal Reduction Process. Batteries 2019, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Tamborrino, V.; Costamagna, G.; Bartoli, M.; Rovere, M.; Jagdale, P.; Lavagna, L.; Ginepro, M.; Tagliaferro, A. Catalytic oxidative desulphurization of pyrolytic oils to fuels over different waste derived carbon-based catalysts. Fuel 2021, 296, 120693. [Google Scholar] [CrossRef]
- Khemakhem, M.; Jaziri, M. Composites based on (ethylene–propylene) copolymer and olive solid waste: Rheological, thermal, mechanical, and morphological behaviors. Polym. Eng. Sci. 2016, 56, 27–35. [Google Scholar] [CrossRef]
- Khalil, A.M.; El-Nemr, K.F.; Hassan, M.L. Acrylate-modified gamma-irradiated olive stones waste as a filler for acrylonitrile butadiene rubber/devulcanized rubber composites. J. Polym. Res. 2019, 26, 249. [Google Scholar] [CrossRef]
- Belbekhouche, S.; Kebe, S.I.; Mahouche-Chergui, S.; Guerrouache, M.; Carbonnier, B.; Jaziri, M.; Chehimi, M.M. Aryl diazonium-modified olive waste: A low cost support for the immobilization of nanocatalysts. Coll. Surf. A Physicochem. Eng. Asp. 2017, 529, 541–549. [Google Scholar] [CrossRef]
- Fernández-Uclés, D.; Elfkih, S.; Mozas-Moral, A.; Bernal-Jurado, E.; Medina-Viruel, M.J.; Abdallah, S.B. Economic Efficiency in the Tunisian Olive Oil Sector. Agriculture 2020, 10, 391. [Google Scholar] [CrossRef]
- Mirzaei, P. Préparation de Matériaux D’électrode Pour L’élimination et La Valorisation de Polluants Azotés. Ph.D. Thesis, Université Paris Est, Paris, France, 2018. Available online: http://www.theses.fr/2018PESC1106 (accessed on 10 September 2021).
- Ahsan, M.A.; Jabbari, V.; El-Gendy, A.A.; Curry, M.L.; Noveron, J.C. Ultrafast catalytic reduction of environmental pollutants in water via MOF-derived magnetic Ni and Cu nanoparticles encapsulated in porous carbon. Appl. Surf. Sci. 2019, 497, 143608. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, H.; Li, H.; Cai, B.; Lv, W.; Cai, C.; Wang, C.; Yan, L.; Liu, Q.; Ma, L. Selective Hydrodeoxygenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran over Alloyed Cu−Ni Encapsulated in Biochar Catalysts. ACS Sustain. Chem. Eng. 2019, 7, 19556–19569. [Google Scholar] [CrossRef]
- Liu, W.-J.; Tian, K.; Jiang, H.; Yu, H.-Q. Harvest of Cu NP anchored magnetic carbon materials from Fe/Cu preloaded biomass: Their pyrolysis, characterization, and catalytic activity on aqueous reduction of 4-nitrophenol. Green Chem. 2014, 16, 4198–4205. [Google Scholar] [CrossRef]
- Saad, A.; Vard, C.; Abderrabba, M.; Chehimi, M.M. Triazole/Triazine-Functionalized Mesoporous Silica As a Hybrid Material Support for Palladium Nanocatalyst. Langmuir 2017, 33, 7137–7146. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Huang, C.; Chen, F.; Chen, C.; Li, H. Removal of aqueous Cr(VI) using magnetic-gelatin supported on Brassica-straw biochar. J. Dispers. Sci. Technol. 2021, 42, 1710–1722. [Google Scholar] [CrossRef]
- Shao, Y.; Guizani, C.; Grosseau, P.; Chaussy, D.; Beneventi, D. Biocarbons from microfibrillated cellulose/lignosulfonate precursors: A study of electrical conductivity development during slow pyrolysis. Carbon 2018, 129, 357–366. [Google Scholar] [CrossRef]
- Li, X.; Hayashi, J.-I.; Li, C.-Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VII. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air. Fuel 2006, 85, 1509–1517. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, B. A Direct Observation of the Fine Aromatic Clusters and Molecular Structures of Biochars. Environ. Sci. Technol. 2017, 51, 5473–5482. [Google Scholar] [CrossRef]
- Kim, D.-G.; Ko, S.-O. Effects of thermal modification of a biochar on persulfate activation and mechanisms of catalytic degradation of a pharmaceutical. Chem. Eng. J. 2020, 399, 125377. [Google Scholar] [CrossRef]
- Tam, N.T.M.; Liu, Y.; Bashir, H.; Yin, Z.; He, Y.; Zhou, X. Efficient Removal of Diclofenac from Aqueous Solution by Potassium Ferrate-Activated Porous Graphitic Biochar: Ambient Condition Influences and Adsorption Mechanism. Int. J. Environ. Res. Public Health 2020, 17, 291. [Google Scholar]
- Endler, L.W.; Wolfart, F.; Mangrich, A.S.; Vidotti, M.; Marchesi, L.F. Facile method to prepare biochar–NiO nanocomposites as a promisor material for electrochemical energy storage devices. Chem. Pap. 2020, 74, 1471–1476. [Google Scholar] [CrossRef]
- Moradi, P.; Hajjami, M.; Tahmasbi, B. Fabricated copper catalyst on biochar nanoparticles for the synthesis of tetrazoles as antimicrobial agents. Polyhedron 2020, 175, 114169. [Google Scholar] [CrossRef]
- Moradi, P.; Hajjami, M. Magnetization of biochar nanoparticles as a novel support for fabrication of organo nickel as a selective, reusable and magnetic nanocatalyst in organic reactions. New J. Chem. 2021, 45, 2981–2994. [Google Scholar] [CrossRef]
- Charan, P.H.K.; Rao, G.R. Synthesis of CuNi and CuNi/SBA-15 by aqueous method at room temperature and their catalytic activity. Microporous Mesoporous Mater. 2014, 200, 101–109. [Google Scholar] [CrossRef]
- Khalil, A.M.; Kenawy, S.H. Hybrid Membranes Based on Clay-Polymer for Removing Methylene Blue from Water. Acta Chim. Slov. 2020, 67, 96–104. [Google Scholar] [CrossRef]
- Abdelhamid, A.E.; El-Sayed, A.A.; Khalil, A.M. Polysulfone nanofiltration membranes enriched with functionalized graphene oxide for dye removal from wastewater. J. Polym. Eng. 2020, 40, 833–841. [Google Scholar] [CrossRef]
- Ait-Touchente, Z.; Khalil, A.M.; Simsek, S.; Boufi, S.; Ferreira, L.F.V.; Vilar, M.R.; Touzani, R.; Chehimi, M.M. Ultrasonic effect on the photocatalytic degradation of Rhodamine 6G (Rh6G) dye by cotton fabrics loaded with TiO2. Cellulose 2020, 27, 1085–1097. [Google Scholar] [CrossRef]
- Mousli, F.; Khalil, A.M.; Maurel, F.; Kadri, A.; Chehimi, M.M. Mixed oxide-polyaniline composite-coated woven cotton fabrics for the visible light catalyzed degradation of hazardous organic pollutants. Cellulose 2020, 27, 7823–7846. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Q.; Rangel-Mendez, J.R.; Jia, F.; Song, S.; Yang, B. Self-assembly montmorillonite nanosheets supported hierarchical MoS2 as enhanced catalyst toward methyl orange degradation. Mater. Chem. Phys. 2020, 246, 122829. [Google Scholar] [CrossRef]
- Bakhsh, E.M.; Khan, S.A.; Marwani, H.M.; Danish, E.Y.; Asiri, A.M.; Khan, S.B. Performance of cellulose acetate-ferric oxide nanocomposite supported metal catalysts toward the reduction of environmental pollutants. Int. J. Biol. Macromol. 2018, 107, 668–677. [Google Scholar] [CrossRef]
- Sha, Y.; Mathew, I.; Cui, Q.; Clay, M.; Gao, F.; Zhang, X.J.; Gu, Z. Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles. Chemosphere 2016, 144, 1530–1535. [Google Scholar] [CrossRef]
Materials | OP Mass (g) | Cu(NO3)2·3H2O Mass (g)/mmol | Ni(NO3)2·6H2O Mass (g)/mmol | Solvent (mL) | Pyrolyzed OP + Metal Ion Mixture (g) | Biochar Mass (g) and Yield (%) | Expected, Final Metal/Biochar Ratio (mmole/g) |
---|---|---|---|---|---|---|---|
Pyrolysis conditions: 30 °C/min; Tmax: 400 °C; Dwell time: 15 min | |||||||
B | - | - | - | - | 0.515 | 0.136 (26.4%) | 0 |
B@CuNi | 3.670 | 0.843/3.489 | 1.007/3.463 | Ethanol, 10 | 0.775 | 0.169 (21.9%) | 5.521 mmol/g |
B@Cu | 3.674 | 0.849/3.514 | - | Ethanol, 10 | 1.192 | 0.372 (31.2%) | 2.489 mmol/g |
B@Ni | 3.67 | - | 1.012/3.480 | Ethanol, 10 | 1.288 | 0.367 (28.5%) | 2.608 mmol/g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalil, A.M.; Michely, L.; Pires, R.; Bastide, S.; Jlassi, K.; Ammar, S.; Jaziri, M.; Chehimi, M.M. Copper/Nickel-Decorated Olive Pit Biochar: One Pot Solid State Synthesis for Environmental Remediation. Appl. Sci. 2021, 11, 8513. https://doi.org/10.3390/app11188513
Khalil AM, Michely L, Pires R, Bastide S, Jlassi K, Ammar S, Jaziri M, Chehimi MM. Copper/Nickel-Decorated Olive Pit Biochar: One Pot Solid State Synthesis for Environmental Remediation. Applied Sciences. 2021; 11(18):8513. https://doi.org/10.3390/app11188513
Chicago/Turabian StyleKhalil, Ahmed M., Laurent Michely, Rémy Pires, Stéphane Bastide, Khouloud Jlassi, Souad Ammar, Mohamed Jaziri, and Mohamed M. Chehimi. 2021. "Copper/Nickel-Decorated Olive Pit Biochar: One Pot Solid State Synthesis for Environmental Remediation" Applied Sciences 11, no. 18: 8513. https://doi.org/10.3390/app11188513
APA StyleKhalil, A. M., Michely, L., Pires, R., Bastide, S., Jlassi, K., Ammar, S., Jaziri, M., & Chehimi, M. M. (2021). Copper/Nickel-Decorated Olive Pit Biochar: One Pot Solid State Synthesis for Environmental Remediation. Applied Sciences, 11(18), 8513. https://doi.org/10.3390/app11188513